Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 11.2 * weight + 110
This means that on average for every extra kilogram weight a rider loses 11.2 positions in the result.
Bruyneel
1
71 kgSunderland
5
65 kgMarie
990
68 kgMuseeuw
990
71 kgJalabert
990
66 kgMoncassin
990
73 kgMoreau
990
77 kgDuclos-Lassalle
990
73 kgGayant
990
69 kgVerstrepen
990
66 kgVirenque
990
65 kgRobin
990
63 kgRoche
990
74 kgTeteriouk
990
72 kgSimon
990
70 kgHolm Sørensen
990
77 kgDjavanian
990
64 kgPeeters
990
76 kgDvorščík
990
68 kgCapelle
990
73 kgMadouas
990
70 kg
1
71 kgSunderland
5
65 kgMarie
990
68 kgMuseeuw
990
71 kgJalabert
990
66 kgMoncassin
990
73 kgMoreau
990
77 kgDuclos-Lassalle
990
73 kgGayant
990
69 kgVerstrepen
990
66 kgVirenque
990
65 kgRobin
990
63 kgRoche
990
74 kgTeteriouk
990
72 kgSimon
990
70 kgHolm Sørensen
990
77 kgDjavanian
990
64 kgPeeters
990
76 kgDvorščík
990
68 kgCapelle
990
73 kgMadouas
990
70 kg
Weight (KG) →
Result →
77
63
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | BRUYNEEL Johan | 71 |
5 | SUNDERLAND Scott | 65 |
990 | MARIE Thierry | 68 |
990 | MUSEEUW Johan | 71 |
990 | JALABERT Laurent | 66 |
990 | MONCASSIN Frédéric | 73 |
990 | MOREAU Francis | 77 |
990 | DUCLOS-LASSALLE Gilbert | 73 |
990 | GAYANT Martial | 69 |
990 | VERSTREPEN Johan | 66 |
990 | VIRENQUE Richard | 65 |
990 | ROBIN Jean-Cyril | 63 |
990 | ROCHE Stephen | 74 |
990 | TETERIOUK Andrei | 72 |
990 | SIMON François | 70 |
990 | HOLM SØRENSEN Brian | 77 |
990 | DJAVANIAN Viatcheslav | 64 |
990 | PEETERS Wilfried | 76 |
990 | DVORŠČÍK Milan | 68 |
990 | CAPELLE Christophe | 73 |
990 | MADOUAS Laurent | 70 |