Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 9.1 * weight + 27
This means that on average for every extra kilogram weight a rider loses 9.1 positions in the result.
Moncassin
1
73 kgSimon
3
70 kgSunderland
4
65 kgPeeters
5
76 kgJalabert
7
66 kgMuseeuw
8
71 kgVerstrepen
10
66 kgMarie
990
68 kgMoreau
990
77 kgDuclos-Lassalle
990
73 kgGayant
990
69 kgBruyneel
990
71 kgVirenque
990
65 kgRobin
990
63 kgRoche
990
74 kgTeteriouk
990
72 kgHolm Sørensen
990
77 kgDjavanian
990
64 kgDvorščík
990
68 kgCapelle
990
73 kgMadouas
990
70 kg
1
73 kgSimon
3
70 kgSunderland
4
65 kgPeeters
5
76 kgJalabert
7
66 kgMuseeuw
8
71 kgVerstrepen
10
66 kgMarie
990
68 kgMoreau
990
77 kgDuclos-Lassalle
990
73 kgGayant
990
69 kgBruyneel
990
71 kgVirenque
990
65 kgRobin
990
63 kgRoche
990
74 kgTeteriouk
990
72 kgHolm Sørensen
990
77 kgDjavanian
990
64 kgDvorščík
990
68 kgCapelle
990
73 kgMadouas
990
70 kg
Weight (KG) →
Result →
77
63
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | MONCASSIN Frédéric | 73 |
3 | SIMON François | 70 |
4 | SUNDERLAND Scott | 65 |
5 | PEETERS Wilfried | 76 |
7 | JALABERT Laurent | 66 |
8 | MUSEEUW Johan | 71 |
10 | VERSTREPEN Johan | 66 |
990 | MARIE Thierry | 68 |
990 | MOREAU Francis | 77 |
990 | DUCLOS-LASSALLE Gilbert | 73 |
990 | GAYANT Martial | 69 |
990 | BRUYNEEL Johan | 71 |
990 | VIRENQUE Richard | 65 |
990 | ROBIN Jean-Cyril | 63 |
990 | ROCHE Stephen | 74 |
990 | TETERIOUK Andrei | 72 |
990 | HOLM SØRENSEN Brian | 77 |
990 | DJAVANIAN Viatcheslav | 64 |
990 | DVORŠČÍK Milan | 68 |
990 | CAPELLE Christophe | 73 |
990 | MADOUAS Laurent | 70 |