Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -35.4 * weight + 3114
This means that on average for every extra kilogram weight a rider loses -35.4 positions in the result.
Veenstra
1
70 kgMoncassin
2
73 kgKelly
4
77 kgCapelle
5
73 kgSimon
7
70 kgTchmil
8
75 kgZamana
9
74 kgJalabert
10
66 kgBouvard
990
70 kgVoskamp
990
75 kgHamburger
990
58 kgMeinert-Nielsen
990
73 kgden Bakker
990
71 kgVirenque
990
65 kgHervé
990
62 kgSvorada
990
76 kgTonkov
990
70 kgJonker
990
69 kgJeker
990
72 kgMattan
990
69 kgVan de Wouwer
990
66 kgArroyo
990
59 kgRous
990
70 kg
1
70 kgMoncassin
2
73 kgKelly
4
77 kgCapelle
5
73 kgSimon
7
70 kgTchmil
8
75 kgZamana
9
74 kgJalabert
10
66 kgBouvard
990
70 kgVoskamp
990
75 kgHamburger
990
58 kgMeinert-Nielsen
990
73 kgden Bakker
990
71 kgVirenque
990
65 kgHervé
990
62 kgSvorada
990
76 kgTonkov
990
70 kgJonker
990
69 kgJeker
990
72 kgMattan
990
69 kgVan de Wouwer
990
66 kgArroyo
990
59 kgRous
990
70 kg
Weight (KG) →
Result →
77
58
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | VEENSTRA Wiebren | 70 |
2 | MONCASSIN Frédéric | 73 |
4 | KELLY Sean | 77 |
5 | CAPELLE Christophe | 73 |
7 | SIMON François | 70 |
8 | TCHMIL Andrei | 75 |
9 | ZAMANA Cezary | 74 |
10 | JALABERT Laurent | 66 |
990 | BOUVARD Gilles | 70 |
990 | VOSKAMP Bart | 75 |
990 | HAMBURGER Bo | 58 |
990 | MEINERT-NIELSEN Peter | 73 |
990 | DEN BAKKER Maarten | 71 |
990 | VIRENQUE Richard | 65 |
990 | HERVÉ Pascal | 62 |
990 | SVORADA Ján | 76 |
990 | TONKOV Pavel | 70 |
990 | JONKER Patrick | 69 |
990 | JEKER Fabian | 72 |
990 | MATTAN Nico | 69 |
990 | VAN DE WOUWER Kurt | 66 |
990 | ARROYO Miguel | 59 |
990 | ROUS Didier | 70 |