Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 40 * weight - 2118
This means that on average for every extra kilogram weight a rider loses 40 positions in the result.
Jalabert
1
66 kgTonkov
2
70 kgVirenque
4
65 kgJeker
6
72 kgHervé
7
62 kgSimon
8
70 kgArroyo
10
59 kgBouvard
990
70 kgMeinert-Nielsen
990
73 kgden Bakker
990
71 kgVoskamp
990
75 kgHamburger
990
58 kgZamana
990
74 kgSvorada
990
76 kgJonker
990
69 kgTchmil
990
75 kgMattan
990
69 kgVan de Wouwer
990
66 kgKelly
990
77 kgRous
990
70 kgCapelle
990
73 kg
1
66 kgTonkov
2
70 kgVirenque
4
65 kgJeker
6
72 kgHervé
7
62 kgSimon
8
70 kgArroyo
10
59 kgBouvard
990
70 kgMeinert-Nielsen
990
73 kgden Bakker
990
71 kgVoskamp
990
75 kgHamburger
990
58 kgZamana
990
74 kgSvorada
990
76 kgJonker
990
69 kgTchmil
990
75 kgMattan
990
69 kgVan de Wouwer
990
66 kgKelly
990
77 kgRous
990
70 kgCapelle
990
73 kg
Weight (KG) →
Result →
77
58
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | JALABERT Laurent | 66 |
2 | TONKOV Pavel | 70 |
4 | VIRENQUE Richard | 65 |
6 | JEKER Fabian | 72 |
7 | HERVÉ Pascal | 62 |
8 | SIMON François | 70 |
10 | ARROYO Miguel | 59 |
990 | BOUVARD Gilles | 70 |
990 | MEINERT-NIELSEN Peter | 73 |
990 | DEN BAKKER Maarten | 71 |
990 | VOSKAMP Bart | 75 |
990 | HAMBURGER Bo | 58 |
990 | ZAMANA Cezary | 74 |
990 | SVORADA Ján | 76 |
990 | JONKER Patrick | 69 |
990 | TCHMIL Andrei | 75 |
990 | MATTAN Nico | 69 |
990 | VAN DE WOUWER Kurt | 66 |
990 | KELLY Sean | 77 |
990 | ROUS Didier | 70 |
990 | CAPELLE Christophe | 73 |