Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Elli
1
71 kgTotschnig
2
62 kgVoskamp
3
75 kgHamburger
4
58 kgBaranowski
5
68 kgArrieta
6
68 kgVasseur
7
70 kgSimon
9
70 kgBeltrán
11
60 kgBrochard
12
68 kgMadouas
13
70 kgHeppner
14
69 kgPlaza
15
68 kgMeier
16
60 kgKasputis
17
83 kgRodrigues
18
68 kgCasero
19
72 kgRebellin
20
63 kg
1
71 kgTotschnig
2
62 kgVoskamp
3
75 kgHamburger
4
58 kgBaranowski
5
68 kgArrieta
6
68 kgVasseur
7
70 kgSimon
9
70 kgBeltrán
11
60 kgBrochard
12
68 kgMadouas
13
70 kgHeppner
14
69 kgPlaza
15
68 kgMeier
16
60 kgKasputis
17
83 kgRodrigues
18
68 kgCasero
19
72 kgRebellin
20
63 kg
Weight (KG) →
Result →
83
58
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | ELLI Alberto | 71 |
2 | TOTSCHNIG Georg | 62 |
3 | VOSKAMP Bart | 75 |
4 | HAMBURGER Bo | 58 |
5 | BARANOWSKI Dariusz | 68 |
6 | ARRIETA José Luis | 68 |
7 | VASSEUR Cédric | 70 |
9 | SIMON François | 70 |
11 | BELTRÁN Manuel | 60 |
12 | BROCHARD Laurent | 68 |
13 | MADOUAS Laurent | 70 |
14 | HEPPNER Jens | 69 |
15 | PLAZA David | 68 |
16 | MEIER Roland | 60 |
17 | KASPUTIS Artūras | 83 |
18 | RODRIGUES Orlando Sergio | 68 |
19 | CASERO Ángel Luis | 72 |
20 | REBELLIN Davide | 63 |