Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Brochard
1
68 kgArrieta
2
68 kgBaranowski
3
68 kgVoskamp
4
75 kgPeron
5
70 kgTotschnig
6
62 kgBeltrán
7
60 kgHamburger
8
58 kgMadouas
9
70 kgRinero
10
65 kgVasseur
11
70 kgRué
12
74 kgBourguignon
13
72 kgSimon
14
70 kgHamilton
16
65 kgMeier
17
60 kgRodrigues
18
68 kgHeppner
19
69 kgMoerenhout
20
74 kg
1
68 kgArrieta
2
68 kgBaranowski
3
68 kgVoskamp
4
75 kgPeron
5
70 kgTotschnig
6
62 kgBeltrán
7
60 kgHamburger
8
58 kgMadouas
9
70 kgRinero
10
65 kgVasseur
11
70 kgRué
12
74 kgBourguignon
13
72 kgSimon
14
70 kgHamilton
16
65 kgMeier
17
60 kgRodrigues
18
68 kgHeppner
19
69 kgMoerenhout
20
74 kg
Weight (KG) →
Result →
75
58
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | BROCHARD Laurent | 68 |
2 | ARRIETA José Luis | 68 |
3 | BARANOWSKI Dariusz | 68 |
4 | VOSKAMP Bart | 75 |
5 | PERON Andrea | 70 |
6 | TOTSCHNIG Georg | 62 |
7 | BELTRÁN Manuel | 60 |
8 | HAMBURGER Bo | 58 |
9 | MADOUAS Laurent | 70 |
10 | RINERO Christophe | 65 |
11 | VASSEUR Cédric | 70 |
12 | RUÉ Gérard | 74 |
13 | BOURGUIGNON Thierry | 72 |
14 | SIMON François | 70 |
16 | HAMILTON Tyler | 65 |
17 | MEIER Roland | 60 |
18 | RODRIGUES Orlando Sergio | 68 |
19 | HEPPNER Jens | 69 |
20 | MOERENHOUT Koos | 74 |