Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Olano
1
70 kgBoardman
2
70 kgHonchar
3
67 kgStreel
4
69 kgSeigneur
5
71 kgAldag
6
75 kgMoreau
7
71 kgMeinert-Nielsen
8
73 kgMuseeuw
9
71 kgRoesems
10
81 kgMattan
11
69 kgMarichal
12
72 kgBassons
13
74 kgGaumont
14
77 kgMerckx
15
77 kgVan Petegem
16
70 kgCamenzind
17
62 kgVan Hyfte
19
70 kg
1
70 kgBoardman
2
70 kgHonchar
3
67 kgStreel
4
69 kgSeigneur
5
71 kgAldag
6
75 kgMoreau
7
71 kgMeinert-Nielsen
8
73 kgMuseeuw
9
71 kgRoesems
10
81 kgMattan
11
69 kgMarichal
12
72 kgBassons
13
74 kgGaumont
14
77 kgMerckx
15
77 kgVan Petegem
16
70 kgCamenzind
17
62 kgVan Hyfte
19
70 kg
Weight (KG) →
Result →
81
62
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | OLANO Abraham | 70 |
2 | BOARDMAN Chris | 70 |
3 | HONCHAR Serhiy | 67 |
4 | STREEL Marc | 69 |
5 | SEIGNEUR Eddy | 71 |
6 | ALDAG Rolf | 75 |
7 | MOREAU Christophe | 71 |
8 | MEINERT-NIELSEN Peter | 73 |
9 | MUSEEUW Johan | 71 |
10 | ROESEMS Bert | 81 |
11 | MATTAN Nico | 69 |
12 | MARICHAL Thierry | 72 |
13 | BASSONS Christophe | 74 |
14 | GAUMONT Philippe | 77 |
15 | MERCKX Axel | 77 |
16 | VAN PETEGEM Peter | 70 |
17 | CAMENZIND Oscar | 62 |
19 | VAN HYFTE Paul | 70 |