Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
García Acosta
1
76 kgOlano
1
70 kgVandenbroucke
2
67 kgMattan
2
69 kgBaranowski
3
68 kgEkimov
3
69 kgO'Grady
4
73 kgBoardman
4
70 kgZülle
5
72 kgBassons
5
74 kgMeier
6
60 kgJulich
6
68 kgDurand
7
76 kgStreel
7
69 kgKnaven
8
68 kgVan Petegem
8
70 kgMerckx
9
77 kgJaksche
9
69 kgMoerenhout
10
74 kgBoogerd
10
62 kgThijs
11
69 kgD'Hollander
11
74 kgHøj
12
80 kg
1
76 kgOlano
1
70 kgVandenbroucke
2
67 kgMattan
2
69 kgBaranowski
3
68 kgEkimov
3
69 kgO'Grady
4
73 kgBoardman
4
70 kgZülle
5
72 kgBassons
5
74 kgMeier
6
60 kgJulich
6
68 kgDurand
7
76 kgStreel
7
69 kgKnaven
8
68 kgVan Petegem
8
70 kgMerckx
9
77 kgJaksche
9
69 kgMoerenhout
10
74 kgBoogerd
10
62 kgThijs
11
69 kgD'Hollander
11
74 kgHøj
12
80 kg
Weight (KG) →
Result →
80
60
1
12
# | Rider | Weight (KG) |
---|---|---|
1 | GARCÍA ACOSTA José Vicente | 76 |
1 | OLANO Abraham | 70 |
2 | VANDENBROUCKE Frank | 67 |
2 | MATTAN Nico | 69 |
3 | BARANOWSKI Dariusz | 68 |
3 | EKIMOV Viatcheslav | 69 |
4 | O'GRADY Stuart | 73 |
4 | BOARDMAN Chris | 70 |
5 | ZÜLLE Alex | 72 |
5 | BASSONS Christophe | 74 |
6 | MEIER Roland | 60 |
6 | JULICH Bobby | 68 |
7 | DURAND Jacky | 76 |
7 | STREEL Marc | 69 |
8 | KNAVEN Servais | 68 |
8 | VAN PETEGEM Peter | 70 |
9 | MERCKX Axel | 77 |
9 | JAKSCHE Jörg | 69 |
10 | MOERENHOUT Koos | 74 |
10 | BOOGERD Michael | 62 |
11 | THIJS Erwin | 69 |
11 | D'HOLLANDER Glenn | 74 |
12 | HØJ Frank | 80 |