Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 5
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Wauters
1
73 kgDekker
1
66 kgStreel
2
69 kgSkibby
2
70 kgBoardman
3
70 kgVoigt
3
76 kgMuseeuw
4
71 kgPeeters
4
76 kgVerbrugghe
5
70 kgVan de Wouwer
5
66 kgHoste
6
80 kgSteels
6
73 kgJemison
7
71 kgHamilton
7
65 kgVan Petegem
8
70 kgKnaven
8
68 kgRoesems
9
81 kgFofonov
10
65 kgD'Hollander
11
74 kgCretskens
11
75 kgBruylandts
12
63 kgVan De Walle
12
74 kg
1
73 kgDekker
1
66 kgStreel
2
69 kgSkibby
2
70 kgBoardman
3
70 kgVoigt
3
76 kgMuseeuw
4
71 kgPeeters
4
76 kgVerbrugghe
5
70 kgVan de Wouwer
5
66 kgHoste
6
80 kgSteels
6
73 kgJemison
7
71 kgHamilton
7
65 kgVan Petegem
8
70 kgKnaven
8
68 kgRoesems
9
81 kgFofonov
10
65 kgD'Hollander
11
74 kgCretskens
11
75 kgBruylandts
12
63 kgVan De Walle
12
74 kg
Weight (KG) →
Result →
81
63
1
12
# | Rider | Weight (KG) |
---|---|---|
1 | WAUTERS Marc | 73 |
1 | DEKKER Erik | 66 |
2 | STREEL Marc | 69 |
2 | SKIBBY Jesper | 70 |
3 | BOARDMAN Chris | 70 |
3 | VOIGT Jens | 76 |
4 | MUSEEUW Johan | 71 |
4 | PEETERS Wilfried | 76 |
5 | VERBRUGGHE Rik | 70 |
5 | VAN DE WOUWER Kurt | 66 |
6 | HOSTE Leif | 80 |
6 | STEELS Tom | 73 |
7 | JEMISON Marty | 71 |
7 | HAMILTON Tyler | 65 |
8 | VAN PETEGEM Peter | 70 |
8 | KNAVEN Servais | 68 |
9 | ROESEMS Bert | 81 |
10 | FOFONOV Dmitriy | 65 |
11 | D'HOLLANDER Glenn | 74 |
11 | CRETSKENS Wilfried | 75 |
12 | BRUYLANDTS Dave | 63 |
12 | VAN DE WALLE Jurgen | 74 |