Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Ekimov
1
69 kgArmstrong
1
72 kgBoardman
3
70 kgVoigt
4
76 kgDekker
5
66 kgWauters
6
73 kgMillar
7
79 kgMattan
8
69 kgKnaven
9
68 kgVan Petegem
10
70 kgMerckx
11
77 kgNardello
12
74 kgPeeters
13
76 kgHoste
14
80 kgVan de Wouwer
15
66 kgVerbrugghe
16
70 kgVande Velde
17
69 kgHamilton
18
65 kgMarichal
19
72 kgTchmil
20
75 kgStreel
22
69 kgDe Clercq
24
80 kgThijs
25
69 kg
1
69 kgArmstrong
1
72 kgBoardman
3
70 kgVoigt
4
76 kgDekker
5
66 kgWauters
6
73 kgMillar
7
79 kgMattan
8
69 kgKnaven
9
68 kgVan Petegem
10
70 kgMerckx
11
77 kgNardello
12
74 kgPeeters
13
76 kgHoste
14
80 kgVan de Wouwer
15
66 kgVerbrugghe
16
70 kgVande Velde
17
69 kgHamilton
18
65 kgMarichal
19
72 kgTchmil
20
75 kgStreel
22
69 kgDe Clercq
24
80 kgThijs
25
69 kg
Weight (KG) →
Result →
80
65
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | EKIMOV Viatcheslav | 69 |
1 | ARMSTRONG Lance | 72 |
3 | BOARDMAN Chris | 70 |
4 | VOIGT Jens | 76 |
5 | DEKKER Erik | 66 |
6 | WAUTERS Marc | 73 |
7 | MILLAR David | 79 |
8 | MATTAN Nico | 69 |
9 | KNAVEN Servais | 68 |
10 | VAN PETEGEM Peter | 70 |
11 | MERCKX Axel | 77 |
12 | NARDELLO Daniele | 74 |
13 | PEETERS Wilfried | 76 |
14 | HOSTE Leif | 80 |
15 | VAN DE WOUWER Kurt | 66 |
16 | VERBRUGGHE Rik | 70 |
17 | VANDE VELDE Christian | 69 |
18 | HAMILTON Tyler | 65 |
19 | MARICHAL Thierry | 72 |
20 | TCHMIL Andrei | 75 |
22 | STREEL Marc | 69 |
24 | DE CLERCQ Hans | 80 |
25 | THIJS Erwin | 69 |