Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3 * weight + 241
This means that on average for every extra kilogram weight a rider loses -3 positions in the result.
De Vocht
1
78 kgGilbert
2
75 kgDe Weert
7
70 kgvan Hummel
9
64 kgHabeaux
12
68 kgNeirynck
13
71 kgKlostergaard
17
69 kgde Kort
21
69 kgScheuneman
25
75 kgClement
38
66 kgPriamo
39
72 kgSchmitt
42
68 kgBonnaire
43
67 kgDevenyns
44
65 kgHonig
57
61 kgVan Hecke
84
69 kgHoogerland
85
65 kg
1
78 kgGilbert
2
75 kgDe Weert
7
70 kgvan Hummel
9
64 kgHabeaux
12
68 kgNeirynck
13
71 kgKlostergaard
17
69 kgde Kort
21
69 kgScheuneman
25
75 kgClement
38
66 kgPriamo
39
72 kgSchmitt
42
68 kgBonnaire
43
67 kgDevenyns
44
65 kgHonig
57
61 kgVan Hecke
84
69 kgHoogerland
85
65 kg
Weight (KG) →
Result →
78
61
1
85
# | Rider | Weight (KG) |
---|---|---|
1 | DE VOCHT Wim | 78 |
2 | GILBERT Philippe | 75 |
7 | DE WEERT Kevin | 70 |
9 | VAN HUMMEL Kenny | 64 |
12 | HABEAUX Grégory | 68 |
13 | NEIRYNCK Kevin | 71 |
17 | KLOSTERGAARD Kasper | 69 |
21 | DE KORT Koen | 69 |
25 | SCHEUNEMAN Niels | 75 |
38 | CLEMENT Stef | 66 |
39 | PRIAMO Matteo | 72 |
42 | SCHMITT Michael | 68 |
43 | BONNAIRE Olivier | 67 |
44 | DEVENYNS Dries | 65 |
57 | HONIG Reinier | 61 |
84 | VAN HECKE Preben | 69 |
85 | HOOGERLAND Johnny | 65 |