Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 12
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Bole
1
69 kgŠpilak
3
68 kgJacobs
4
68 kgDi Grégorio
5
67 kgBakelants
6
67 kgVelits
8
63 kgSchleck
9
68 kgMeersman
10
63 kgCherel
11
65 kgVanendert
13
62 kgSchär
19
78 kgVelits
23
70 kgBoom
24
75 kgVachon
27
65 kgWilmann
30
69 kgBiesek
31
66 kgDrucker
32
75 kgLund
38
65 kgKlemme
42
72 kgBodnar
43
77 kgWyss
44
65 kgSeeldraeyers
49
60 kgVantomme
54
63 kgKrettly
86
72 kg
1
69 kgŠpilak
3
68 kgJacobs
4
68 kgDi Grégorio
5
67 kgBakelants
6
67 kgVelits
8
63 kgSchleck
9
68 kgMeersman
10
63 kgCherel
11
65 kgVanendert
13
62 kgSchär
19
78 kgVelits
23
70 kgBoom
24
75 kgVachon
27
65 kgWilmann
30
69 kgBiesek
31
66 kgDrucker
32
75 kgLund
38
65 kgKlemme
42
72 kgBodnar
43
77 kgWyss
44
65 kgSeeldraeyers
49
60 kgVantomme
54
63 kgKrettly
86
72 kg
Weight (KG) →
Result →
78
60
1
86
# | Rider | Weight (KG) |
---|---|---|
1 | BOLE Grega | 69 |
3 | ŠPILAK Simon | 68 |
4 | JACOBS Pieter | 68 |
5 | DI GRÉGORIO Rémy | 67 |
6 | BAKELANTS Jan | 67 |
8 | VELITS Peter | 63 |
9 | SCHLECK Andy | 68 |
10 | MEERSMAN Gianni | 63 |
11 | CHEREL Mikaël | 65 |
13 | VANENDERT Jelle | 62 |
19 | SCHÄR Michael | 78 |
23 | VELITS Martin | 70 |
24 | BOOM Lars | 75 |
27 | VACHON Florian | 65 |
30 | WILMANN Frederik | 69 |
31 | BIESEK Szymon | 66 |
32 | DRUCKER Jempy | 75 |
38 | LUND Anders | 65 |
42 | KLEMME Dominic | 72 |
43 | BODNAR Maciej | 77 |
44 | WYSS Danilo | 65 |
49 | SEELDRAEYERS Kevin | 60 |
54 | VANTOMME Maxime | 63 |
86 | KRETTLY Jerome | 72 |