Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.8 * weight - 99
This means that on average for every extra kilogram weight a rider loses 1.8 positions in the result.
Schär
1
78 kgCherel
2
65 kgJacobs
3
68 kgVelits
4
63 kgSchleck
5
68 kgVelits
8
70 kgDi Grégorio
10
67 kgMeersman
11
63 kgLund
12
65 kgVanendert
17
62 kgBole
20
69 kgBakelants
22
67 kgŠpilak
25
68 kgBoom
26
75 kgSeeldraeyers
27
60 kgBiesek
30
66 kgVantomme
31
63 kgVachon
37
65 kgKrettly
42
72 kgKlemme
60
72 kgWilmann
64
69 kgBodnar
66
77 kgDrucker
77
75 kg
1
78 kgCherel
2
65 kgJacobs
3
68 kgVelits
4
63 kgSchleck
5
68 kgVelits
8
70 kgDi Grégorio
10
67 kgMeersman
11
63 kgLund
12
65 kgVanendert
17
62 kgBole
20
69 kgBakelants
22
67 kgŠpilak
25
68 kgBoom
26
75 kgSeeldraeyers
27
60 kgBiesek
30
66 kgVantomme
31
63 kgVachon
37
65 kgKrettly
42
72 kgKlemme
60
72 kgWilmann
64
69 kgBodnar
66
77 kgDrucker
77
75 kg
Weight (KG) →
Result →
78
60
1
77
# | Rider | Weight (KG) |
---|---|---|
1 | SCHÄR Michael | 78 |
2 | CHEREL Mikaël | 65 |
3 | JACOBS Pieter | 68 |
4 | VELITS Peter | 63 |
5 | SCHLECK Andy | 68 |
8 | VELITS Martin | 70 |
10 | DI GRÉGORIO Rémy | 67 |
11 | MEERSMAN Gianni | 63 |
12 | LUND Anders | 65 |
17 | VANENDERT Jelle | 62 |
20 | BOLE Grega | 69 |
22 | BAKELANTS Jan | 67 |
25 | ŠPILAK Simon | 68 |
26 | BOOM Lars | 75 |
27 | SEELDRAEYERS Kevin | 60 |
30 | BIESEK Szymon | 66 |
31 | VANTOMME Maxime | 63 |
37 | VACHON Florian | 65 |
42 | KRETTLY Jerome | 72 |
60 | KLEMME Dominic | 72 |
64 | WILMANN Frederik | 69 |
66 | BODNAR Maciej | 77 |
77 | DRUCKER Jempy | 75 |