Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 66
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Roux
1
73 kgKvist
2
68 kgVan Melsen
5
77 kgSteensen
11
65 kgVenter
20
70 kgGastauer
22
73 kgThurau
25
73 kgCammaerts
26
74 kgRossetto
28
68 kgStauff
36
82 kgJanse van Rensburg
39
63 kgCharucki
47
64 kgGallopin
52
69 kgMoberg Jørgensen
60
73 kgJanorschke
64
78 kgZangerle
77
63 kgDron
99
72 kg
1
73 kgKvist
2
68 kgVan Melsen
5
77 kgSteensen
11
65 kgVenter
20
70 kgGastauer
22
73 kgThurau
25
73 kgCammaerts
26
74 kgRossetto
28
68 kgStauff
36
82 kgJanse van Rensburg
39
63 kgCharucki
47
64 kgGallopin
52
69 kgMoberg Jørgensen
60
73 kgJanorschke
64
78 kgZangerle
77
63 kgDron
99
72 kg
Weight (KG) →
Result →
82
63
1
99
# | Rider | Weight (KG) |
---|---|---|
1 | ROUX Anthony | 73 |
2 | KVIST Thomas Vedel | 68 |
5 | VAN MELSEN Kévin | 77 |
11 | STEENSEN André | 65 |
20 | VENTER Jaco | 70 |
22 | GASTAUER Ben | 73 |
25 | THURAU Björn | 73 |
26 | CAMMAERTS Edwig | 74 |
28 | ROSSETTO Stéphane | 68 |
36 | STAUFF Andreas | 82 |
39 | JANSE VAN RENSBURG Jacques | 63 |
47 | CHARUCKI Paweł | 64 |
52 | GALLOPIN Tony | 69 |
60 | MOBERG JØRGENSEN Christian | 73 |
64 | JANORSCHKE Grischa | 78 |
77 | ZANGERLE Joel | 63 |
99 | DRON Boris | 72 |