Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 4
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Lander
1
70 kgSprengers
3
60 kgKelderman
5
65 kgMatthews
6
72 kgDe Bie
7
65 kgVereecken
8
72 kgLietaer
11
70 kgHepburn
13
77 kgQuaade
15
77 kgKoch
17
69 kgVan Keirsbulck
18
89 kgBreen
23
74 kgSagan
30
78 kgThill
31
73 kgBardet
38
65 kgWaeytens
39
67 kgPinot
40
63 kgLe Bon
45
70 kgFreiberg
47
82 kgŠtimulak
50
64 kgHenttala
65
73 kgKrauwel
74
77 kg
1
70 kgSprengers
3
60 kgKelderman
5
65 kgMatthews
6
72 kgDe Bie
7
65 kgVereecken
8
72 kgLietaer
11
70 kgHepburn
13
77 kgQuaade
15
77 kgKoch
17
69 kgVan Keirsbulck
18
89 kgBreen
23
74 kgSagan
30
78 kgThill
31
73 kgBardet
38
65 kgWaeytens
39
67 kgPinot
40
63 kgLe Bon
45
70 kgFreiberg
47
82 kgŠtimulak
50
64 kgHenttala
65
73 kgKrauwel
74
77 kg
Weight (KG) →
Result →
89
60
1
74
# | Rider | Weight (KG) |
---|---|---|
1 | LANDER Sebastian | 70 |
3 | SPRENGERS Thomas | 60 |
5 | KELDERMAN Wilco | 65 |
6 | MATTHEWS Michael | 72 |
7 | DE BIE Sean | 65 |
8 | VEREECKEN Nicolas | 72 |
11 | LIETAER Eliot | 70 |
13 | HEPBURN Michael | 77 |
15 | QUAADE Rasmus | 77 |
17 | KOCH Michel | 69 |
18 | VAN KEIRSBULCK Guillaume | 89 |
23 | BREEN Vegard | 74 |
30 | SAGAN Peter | 78 |
31 | THILL Tom | 73 |
38 | BARDET Romain | 65 |
39 | WAEYTENS Zico | 67 |
40 | PINOT Thibaut | 63 |
45 | LE BON Johan | 70 |
47 | FREIBERG Michael | 82 |
50 | ŠTIMULAK Klemen | 64 |
65 | HENTTALA Joonas | 73 |
74 | KRAUWEL Bas | 77 |