Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Barbin
1
60 kgNovák
3
71 kgBongiorno
4
56 kgDennis
5
72 kgPolanc
6
62 kgWatson
8
72 kgSenni
9
60 kgPibernik
11
60 kgGabburo
13
63 kgEdmondson
16
62 kgTratnik
21
67 kgMcCarthy
30
63 kgMulhern
31
75 kgSbaragli
34
74 kgHoller
37
58 kgStöhr
40
66 kgBasso
45
63 kgŠtimulak
47
64 kg
1
60 kgNovák
3
71 kgBongiorno
4
56 kgDennis
5
72 kgPolanc
6
62 kgWatson
8
72 kgSenni
9
60 kgPibernik
11
60 kgGabburo
13
63 kgEdmondson
16
62 kgTratnik
21
67 kgMcCarthy
30
63 kgMulhern
31
75 kgSbaragli
34
74 kgHoller
37
58 kgStöhr
40
66 kgBasso
45
63 kgŠtimulak
47
64 kg
Weight (KG) →
Result →
75
56
1
47
# | Rider | Weight (KG) |
---|---|---|
1 | BARBIN Enrico | 60 |
3 | NOVÁK Jakub | 71 |
4 | BONGIORNO Francesco Manuel | 56 |
5 | DENNIS Rohan | 72 |
6 | POLANC Jan | 62 |
8 | WATSON Calvin | 72 |
9 | SENNI Manuel | 60 |
11 | PIBERNIK Luka | 60 |
13 | GABBURO Davide | 63 |
16 | EDMONDSON Joshua | 62 |
21 | TRATNIK Jan | 67 |
30 | MCCARTHY Jay | 63 |
31 | MULHERN Mitchell | 75 |
34 | SBARAGLI Kristian | 74 |
37 | HOLLER Nikodemus | 58 |
40 | STÖHR Pavel | 66 |
45 | BASSO Leonardo | 63 |
47 | ŠTIMULAK Klemen | 64 |