Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Consonni
1
60 kgGanna
2
83 kgBagioli
3
64 kgRocchetti
4
72 kgFabbro
5
52 kgWood
10
72 kgFrapporti
13
74 kgPessot
14
75 kgZandomeneghi
15
61 kgGandin
16
69 kgTagliani
18
70 kgFedeli
22
65 kgSchönberger
26
64 kgCherkasov
27
68 kgZilio
30
65 kgRavanelli
31
66 kgAlbanese
35
70 kgVerza
36
69 kgFortunato
37
57 kgRostovtsev
38
73 kgBallerini
43
71 kg
1
60 kgGanna
2
83 kgBagioli
3
64 kgRocchetti
4
72 kgFabbro
5
52 kgWood
10
72 kgFrapporti
13
74 kgPessot
14
75 kgZandomeneghi
15
61 kgGandin
16
69 kgTagliani
18
70 kgFedeli
22
65 kgSchönberger
26
64 kgCherkasov
27
68 kgZilio
30
65 kgRavanelli
31
66 kgAlbanese
35
70 kgVerza
36
69 kgFortunato
37
57 kgRostovtsev
38
73 kgBallerini
43
71 kg
Weight (KG) →
Result →
83
52
1
43
# | Rider | Weight (KG) |
---|---|---|
1 | CONSONNI Simone | 60 |
2 | GANNA Filippo | 83 |
3 | BAGIOLI Nicola | 64 |
4 | ROCCHETTI Filippo | 72 |
5 | FABBRO Matteo | 52 |
10 | WOOD Oliver | 72 |
13 | FRAPPORTI Mattia | 74 |
14 | PESSOT Alessandro | 75 |
15 | ZANDOMENEGHI Simone | 61 |
16 | GANDIN Stefano | 69 |
18 | TAGLIANI Filippo | 70 |
22 | FEDELI Alessandro | 65 |
26 | SCHÖNBERGER Sebastian | 64 |
27 | CHERKASOV Nikolay | 68 |
30 | ZILIO Giacomo | 65 |
31 | RAVANELLI Simone | 66 |
35 | ALBANESE Vincenzo | 70 |
36 | VERZA Riccardo | 69 |
37 | FORTUNATO Lorenzo | 57 |
38 | ROSTOVTSEV Sergey | 73 |
43 | BALLERINI Davide | 71 |