Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 17
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Rebellin
1
63 kgHamburger
2
58 kgCamenzind
3
62 kgGiunti
4
62 kgCasagrande
5
64 kgBossoni
8
62 kgPascual Llorente
9
68 kgZberg
10
69 kgMoos
11
64 kgGiordani
12
68 kgPrzydział
14
80 kgMenchov
15
65 kgCarlström
16
70 kgSchnider
17
65 kgTrampusch
19
60 kgSzmyd
20
60 kgSciandri
21
75 kg
1
63 kgHamburger
2
58 kgCamenzind
3
62 kgGiunti
4
62 kgCasagrande
5
64 kgBossoni
8
62 kgPascual Llorente
9
68 kgZberg
10
69 kgMoos
11
64 kgGiordani
12
68 kgPrzydział
14
80 kgMenchov
15
65 kgCarlström
16
70 kgSchnider
17
65 kgTrampusch
19
60 kgSzmyd
20
60 kgSciandri
21
75 kg
Weight (KG) →
Result →
80
58
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | REBELLIN Davide | 63 |
2 | HAMBURGER Bo | 58 |
3 | CAMENZIND Oscar | 62 |
4 | GIUNTI Massimo | 62 |
5 | CASAGRANDE Francesco | 64 |
8 | BOSSONI Paolo | 62 |
9 | PASCUAL LLORENTE Javier | 68 |
10 | ZBERG Markus | 69 |
11 | MOOS Alexandre | 64 |
12 | GIORDANI Leonardo | 68 |
14 | PRZYDZIAŁ Piotr | 80 |
15 | MENCHOV Denis | 65 |
16 | CARLSTRÖM Kjell | 70 |
17 | SCHNIDER Daniel | 65 |
19 | TRAMPUSCH Gerhard | 60 |
20 | SZMYD Sylwester | 60 |
21 | SCIANDRI Maximilian | 75 |