Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 50
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Figueiredo
1
56 kgBou
2
62 kgLastra
3
64 kgFreitas
4
64 kgBarceló
5
65 kgBarbio
6
61 kgDíaz
7
64 kgAntunes
8
55 kgEulálio
9
62 kgMaté
11
68 kgCañellas
12
66 kgNicolau
13
66 kgLangellotti
14
64 kgFernandes
15
63 kgNieve
16
62 kgNunes
17
64 kgGallego
18
62 kgMendes
20
64 kgSalgueiro
21
68 kgMadrazo
22
61 kgIsidoro
23
63 kgFernández
25
69 kgAngulo
26
67 kg
1
56 kgBou
2
62 kgLastra
3
64 kgFreitas
4
64 kgBarceló
5
65 kgBarbio
6
61 kgDíaz
7
64 kgAntunes
8
55 kgEulálio
9
62 kgMaté
11
68 kgCañellas
12
66 kgNicolau
13
66 kgLangellotti
14
64 kgFernandes
15
63 kgNieve
16
62 kgNunes
17
64 kgGallego
18
62 kgMendes
20
64 kgSalgueiro
21
68 kgMadrazo
22
61 kgIsidoro
23
63 kgFernández
25
69 kgAngulo
26
67 kg
Weight (KG) →
Result →
69
55
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | FIGUEIREDO Frederico | 56 |
2 | BOU Joan | 62 |
3 | LASTRA Jonathan | 64 |
4 | FREITAS Daniel | 64 |
5 | BARCELÓ Fernando | 65 |
6 | BARBIO António | 61 |
7 | DÍAZ José Manuel | 64 |
8 | ANTUNES Tiago | 55 |
9 | EULÁLIO Afonso | 62 |
11 | MATÉ Luis Ángel | 68 |
12 | CAÑELLAS Xavier | 66 |
13 | NICOLAU Joel | 66 |
14 | LANGELLOTTI Victor | 64 |
15 | FERNANDES Luís | 63 |
16 | NIEVE Mikel | 62 |
17 | NUNES Hugo | 64 |
18 | GALLEGO Alberto | 62 |
20 | MENDES José | 64 |
21 | SALGUEIRO Carlos Miguel | 68 |
22 | MADRAZO Ángel | 61 |
23 | ISIDORO Micael | 63 |
25 | FERNÁNDEZ Delio | 69 |
26 | ANGULO Antonio | 67 |