Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Prades
1
63 kgDíaz
2
64 kgGonzález
3
68 kgMatias
4
72 kgGalván
5
69 kgNicolau
6
66 kgMolenaar
8
63 kgFonte
9
60 kgCampos
10
60 kgFigueiredo
11
56 kgLangellotti
12
64 kgCañellas
13
64 kgAntunes
14
55 kgBarbio
15
61 kgSousa
16
61 kgWhelan
17
64 kgOkamika
18
70 kgMoreira
19
76 kgTrueba
20
65 kgPelegrí
21
63 kg
1
63 kgDíaz
2
64 kgGonzález
3
68 kgMatias
4
72 kgGalván
5
69 kgNicolau
6
66 kgMolenaar
8
63 kgFonte
9
60 kgCampos
10
60 kgFigueiredo
11
56 kgLangellotti
12
64 kgCañellas
13
64 kgAntunes
14
55 kgBarbio
15
61 kgSousa
16
61 kgWhelan
17
64 kgOkamika
18
70 kgMoreira
19
76 kgTrueba
20
65 kgPelegrí
21
63 kg
Weight (KG) →
Result →
76
55
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | PRADES Eduard | 63 |
2 | DÍAZ José Manuel | 64 |
3 | GONZÁLEZ David | 68 |
4 | MATIAS João | 72 |
5 | GALVÁN Francisco | 69 |
6 | NICOLAU Joel | 66 |
8 | MOLENAAR Alex | 63 |
9 | FONTE César | 60 |
10 | CAMPOS Francisco | 60 |
11 | FIGUEIREDO Frederico | 56 |
12 | LANGELLOTTI Victor | 64 |
13 | CAÑELLAS Xavier | 64 |
14 | ANTUNES Tiago | 55 |
15 | BARBIO António | 61 |
16 | SOUSA José | 61 |
17 | WHELAN James | 64 |
18 | OKAMIKA Ander | 70 |
19 | MOREIRA Mauricio | 76 |
20 | TRUEBA Alvaro | 65 |
21 | PELEGRÍ Óscar | 63 |