Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Figueiredo
1
56 kgBennassar
2
75 kgSchlegel
3
72 kgWhelan
4
64 kgEulálio
5
62 kgCasimiro
6
62 kgMoreira
7
76 kgNych
8
74 kgNicolau
9
66 kgFranco
10
58 kgMolenaar
11
63 kgCarboni
13
61 kgNunes
14
64 kgMartingil
16
67 kgOkamika
17
70 kgBarbio
18
61 kgCañellas
19
66 kgMárquez
20
66 kgLeal
21
59 kgDíaz
22
64 kgPinto
23
68 kg
1
56 kgBennassar
2
75 kgSchlegel
3
72 kgWhelan
4
64 kgEulálio
5
62 kgCasimiro
6
62 kgMoreira
7
76 kgNych
8
74 kgNicolau
9
66 kgFranco
10
58 kgMolenaar
11
63 kgCarboni
13
61 kgNunes
14
64 kgMartingil
16
67 kgOkamika
17
70 kgBarbio
18
61 kgCañellas
19
66 kgMárquez
20
66 kgLeal
21
59 kgDíaz
22
64 kgPinto
23
68 kg
Weight (KG) →
Result →
76
56
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | FIGUEIREDO Frederico | 56 |
2 | BENNASSAR Joan Marti | 75 |
3 | SCHLEGEL Michal | 72 |
4 | WHELAN James | 64 |
5 | EULÁLIO Afonso | 62 |
6 | CASIMIRO Henrique | 62 |
7 | MOREIRA Mauricio | 76 |
8 | NYCH Artem | 74 |
9 | NICOLAU Joel | 66 |
10 | FRANCO Alejandro | 58 |
11 | MOLENAAR Alex | 63 |
13 | CARBONI Giovanni | 61 |
14 | NUNES Hugo | 64 |
16 | MARTINGIL César | 67 |
17 | OKAMIKA Ander | 70 |
18 | BARBIO António | 61 |
19 | CAÑELLAS Xavier | 66 |
20 | MÁRQUEZ Martí | 66 |
21 | LEAL Tiago | 59 |
22 | DÍAZ José Manuel | 64 |
23 | PINTO Pedro | 68 |