Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Eulálio
1
62 kgAular
2
65 kgBarceló
3
65 kgGonzález
4
68 kgGalván
5
69 kgGonzález
6
60 kgMartingil
7
67 kgFranco
9
58 kgAngulo
10
67 kgNych
11
74 kgLeal
12
59 kgTivani
13
67 kgVacek
14
60 kgBárta
15
79 kgGuerreiro
16
60 kgAntunes
18
55 kgRota
19
64 kgSilva
20
59 kgMatias
21
72 kgCarvalho
22
60 kgJohnston
24
55 kgNarciso
25
72 kgFonte
28
60 kgFernández
30
78 kg
1
62 kgAular
2
65 kgBarceló
3
65 kgGonzález
4
68 kgGalván
5
69 kgGonzález
6
60 kgMartingil
7
67 kgFranco
9
58 kgAngulo
10
67 kgNych
11
74 kgLeal
12
59 kgTivani
13
67 kgVacek
14
60 kgBárta
15
79 kgGuerreiro
16
60 kgAntunes
18
55 kgRota
19
64 kgSilva
20
59 kgMatias
21
72 kgCarvalho
22
60 kgJohnston
24
55 kgNarciso
25
72 kgFonte
28
60 kgFernández
30
78 kg
Weight (KG) →
Result →
79
55
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | EULÁLIO Afonso | 62 |
2 | AULAR Orluis | 65 |
3 | BARCELÓ Fernando | 65 |
4 | GONZÁLEZ David | 68 |
5 | GALVÁN Francisco | 69 |
6 | GONZÁLEZ Abner | 60 |
7 | MARTINGIL César | 67 |
9 | FRANCO Alejandro | 58 |
10 | ANGULO Antonio | 67 |
11 | NYCH Artem | 74 |
12 | LEAL Tiago | 59 |
13 | TIVANI German Nicolás | 67 |
14 | VACEK Karel | 60 |
15 | BÁRTA Tomáš | 79 |
16 | GUERREIRO Francisco | 60 |
18 | ANTUNES Tiago | 55 |
19 | ROTA Raúl | 64 |
20 | SILVA Bruno | 59 |
21 | MATIAS João | 72 |
22 | CARVALHO Rui | 60 |
24 | JOHNSTON Calum | 55 |
25 | NARCISO Diogo | 72 |
28 | FONTE César | 60 |
30 | FERNÁNDEZ Miguel Ángel | 78 |