Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Aznar
1
68 kgAznar
2
59 kgPeñuela
3
56 kgSilva
6
67 kgNarciso
7
72 kgGilmore
10
70 kgAgnoletto
11
69 kgEulálio
12
62 kgGonçalves
13
65 kgFranco
15
58 kgHadden
18
68 kgCranage
20
63 kgTaboada
23
65 kgPinto
24
65 kgTomkinson
25
61 kgMiller
27
64 kgMaia
30
68 kgMacedo
31
66 kgGaspar
40
65 kgAlves
45
62 kg
1
68 kgAznar
2
59 kgPeñuela
3
56 kgSilva
6
67 kgNarciso
7
72 kgGilmore
10
70 kgAgnoletto
11
69 kgEulálio
12
62 kgGonçalves
13
65 kgFranco
15
58 kgHadden
18
68 kgCranage
20
63 kgTaboada
23
65 kgPinto
24
65 kgTomkinson
25
61 kgMiller
27
64 kgMaia
30
68 kgMacedo
31
66 kgGaspar
40
65 kgAlves
45
62 kg
Weight (KG) →
Result →
72
56
1
45
# | Rider | Weight (KG) |
---|---|---|
1 | AZNAR Unai | 68 |
2 | AZNAR Hugo | 59 |
3 | PEÑUELA Francisco Joel | 56 |
6 | SILVA Pedro | 67 |
7 | NARCISO Diogo | 72 |
10 | GILMORE Brady | 70 |
11 | AGNOLETTO Blake | 69 |
12 | EULÁLIO Afonso | 62 |
13 | GONÇALVES Diogo | 65 |
15 | FRANCO Alejandro | 58 |
18 | HADDEN Nate | 68 |
20 | CRANAGE Joshua | 63 |
23 | TABOADA Andrés | 65 |
24 | PINTO Diogo | 65 |
25 | TOMKINSON Tyler | 61 |
27 | MILLER Lachlan | 64 |
30 | MAIA Emanuel | 68 |
31 | MACEDO João | 66 |
40 | GASPAR Tomás | 65 |
45 | ALVES Francisco | 62 |