Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 42
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Peñuela
1
56 kgEulálio
2
62 kgSilva
3
67 kgFranco
4
58 kgAznar
5
59 kgGonçalves
7
65 kgMacedo
10
66 kgHadden
12
68 kgGilmore
16
70 kgAznar
17
68 kgAgnoletto
19
69 kgTaboada
20
65 kgPinto
21
65 kgNarciso
22
72 kgCranage
28
63 kgTomkinson
33
61 kgMiller
34
64 kgMaia
35
68 kgGaspar
39
65 kg
1
56 kgEulálio
2
62 kgSilva
3
67 kgFranco
4
58 kgAznar
5
59 kgGonçalves
7
65 kgMacedo
10
66 kgHadden
12
68 kgGilmore
16
70 kgAznar
17
68 kgAgnoletto
19
69 kgTaboada
20
65 kgPinto
21
65 kgNarciso
22
72 kgCranage
28
63 kgTomkinson
33
61 kgMiller
34
64 kgMaia
35
68 kgGaspar
39
65 kg
Weight (KG) →
Result →
72
56
1
39
# | Rider | Weight (KG) |
---|---|---|
1 | PEÑUELA Francisco Joel | 56 |
2 | EULÁLIO Afonso | 62 |
3 | SILVA Pedro | 67 |
4 | FRANCO Alejandro | 58 |
5 | AZNAR Hugo | 59 |
7 | GONÇALVES Diogo | 65 |
10 | MACEDO João | 66 |
12 | HADDEN Nate | 68 |
16 | GILMORE Brady | 70 |
17 | AZNAR Unai | 68 |
19 | AGNOLETTO Blake | 69 |
20 | TABOADA Andrés | 65 |
21 | PINTO Diogo | 65 |
22 | NARCISO Diogo | 72 |
28 | CRANAGE Joshua | 63 |
33 | TOMKINSON Tyler | 61 |
34 | MILLER Lachlan | 64 |
35 | MAIA Emanuel | 68 |
39 | GASPAR Tomás | 65 |