Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 13
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Klier
1
72 kgHunter
2
72 kgvan Bon
3
72 kgJohansen
4
78 kgVierhouten
5
71 kgScheirlinckx
6
67 kgBaguet
8
67 kgGardeyn
9
75 kgPronk
10
73 kgVan Goolen
13
70 kgDetilloux
15
62 kgVan De Walle
16
74 kgDekker
17
66 kgVainšteins
18
72 kgKopp
19
68 kgVestøl
21
85 kgStreel
23
69 kg
1
72 kgHunter
2
72 kgvan Bon
3
72 kgJohansen
4
78 kgVierhouten
5
71 kgScheirlinckx
6
67 kgBaguet
8
67 kgGardeyn
9
75 kgPronk
10
73 kgVan Goolen
13
70 kgDetilloux
15
62 kgVan De Walle
16
74 kgDekker
17
66 kgVainšteins
18
72 kgKopp
19
68 kgVestøl
21
85 kgStreel
23
69 kg
Weight (KG) →
Result →
85
62
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | KLIER Andreas | 72 |
2 | HUNTER Robert | 72 |
3 | VAN BON Léon | 72 |
4 | JOHANSEN Allan | 78 |
5 | VIERHOUTEN Aart | 71 |
6 | SCHEIRLINCKX Bert | 67 |
8 | BAGUET Serge | 67 |
9 | GARDEYN Gorik | 75 |
10 | PRONK Matthé | 73 |
13 | VAN GOOLEN Jurgen | 70 |
15 | DETILLOUX Christophe | 62 |
16 | VAN DE WALLE Jurgen | 74 |
17 | DEKKER Erik | 66 |
18 | VAINŠTEINS Romāns | 72 |
19 | KOPP David | 68 |
21 | VESTØL Bjørnar | 85 |
23 | STREEL Marc | 69 |