Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Sieberg
1
80 kgLagutin
3
68 kgAmorison
4
70 kgHondo
5
73 kgCoenen
6
67 kgRetschke
7
66 kgSijmens
8
69 kgScheirlinckx
9
67 kgBonnet
10
80 kgSentjens
11
75 kgSørensen
12
64 kgvan Leijen
14
73 kgFriedemann
16
75 kgHayman
17
78 kgJørgensen
18
60 kgMol
21
83 kgDe Groote
23
71 kgde Wilde
33
74 kg
1
80 kgLagutin
3
68 kgAmorison
4
70 kgHondo
5
73 kgCoenen
6
67 kgRetschke
7
66 kgSijmens
8
69 kgScheirlinckx
9
67 kgBonnet
10
80 kgSentjens
11
75 kgSørensen
12
64 kgvan Leijen
14
73 kgFriedemann
16
75 kgHayman
17
78 kgJørgensen
18
60 kgMol
21
83 kgDe Groote
23
71 kgde Wilde
33
74 kg
Weight (KG) →
Result →
83
60
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | SIEBERG Marcel | 80 |
3 | LAGUTIN Sergey | 68 |
4 | AMORISON Frédéric | 70 |
5 | HONDO Danilo | 73 |
6 | COENEN Johan | 67 |
7 | RETSCHKE Robert | 66 |
8 | SIJMENS Nico | 69 |
9 | SCHEIRLINCKX Bert | 67 |
10 | BONNET William | 80 |
11 | SENTJENS Roy | 75 |
12 | SØRENSEN Chris Anker | 64 |
14 | VAN LEIJEN Joost | 73 |
16 | FRIEDEMANN Matthias | 75 |
17 | HAYMAN Mathew | 78 |
18 | JØRGENSEN René | 60 |
21 | MOL Wouter | 83 |
23 | DE GROOTE Thierry | 71 |
33 | DE WILDE Sjef | 74 |