Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 11
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Balmer
3
70 kgPernsteiner
6
55 kgNeuman
7
72 kgDe Carlo
10
67 kgEckerstorfer
13
62 kgGojković
17
68 kgMarivoet
20
59 kgŠtoček
22
80 kgCole
23
71 kgCapra
24
73 kgPeák
25
74 kgViviani
27
69 kgGlivar
28
64 kgStosz
30
70 kgOblak
31
76 kgPutz
34
62 kgHopkins
38
74 kgBrożyna
41
71 kgDina
43
67 kg
3
70 kgPernsteiner
6
55 kgNeuman
7
72 kgDe Carlo
10
67 kgEckerstorfer
13
62 kgGojković
17
68 kgMarivoet
20
59 kgŠtoček
22
80 kgCole
23
71 kgCapra
24
73 kgPeák
25
74 kgViviani
27
69 kgGlivar
28
64 kgStosz
30
70 kgOblak
31
76 kgPutz
34
62 kgHopkins
38
74 kgBrożyna
41
71 kgDina
43
67 kg
Weight (KG) →
Result →
80
55
3
43
# | Rider | Weight (KG) |
---|---|---|
3 | BALMER Alexandre | 70 |
6 | PERNSTEINER Hermann | 55 |
7 | NEUMAN Dominik | 72 |
10 | DE CARLO Giovanni | 67 |
13 | ECKERSTORFER Benjamin | 62 |
17 | GOJKOVIĆ Nicolas | 68 |
20 | MARIVOET Duarte | 59 |
22 | ŠTOČEK Matúš | 80 |
23 | COLE Owen | 71 |
24 | CAPRA Thomas | 73 |
25 | PEÁK Barnabás | 74 |
27 | VIVIANI Attilio | 69 |
28 | GLIVAR Gal | 64 |
30 | STOSZ Patryk | 70 |
31 | OBLAK Domen | 76 |
34 | PUTZ Sebastian | 62 |
38 | HOPKINS Dylan | 74 |
41 | BROŻYNA Piotr | 71 |
43 | DINA Márton | 67 |