Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.4 * weight + 116
This means that on average for every extra kilogram weight a rider loses -1.4 positions in the result.
Wiebes
1
60 kgConfalonieri
4
56 kgBujak
7
63 kgSmulders
9
51 kgMajerus
12
56 kgConsonni
15
59 kgKuijpers
16
73 kgGerritse
17
59 kgPowless
20
59 kgDemey
25
56 kgvan den Broek-Blaak
28
64 kgGreenwood
33
60 kgDe Wilde
47
62 kgLee
49
53 kgFranz
50
52 kgGuarischi
51
57 kgShapira
56
58 kgCouzens
58
59 kgBertizzolo
63
54 kgGonzález
66
51 kgVan Dam
68
58 kg
1
60 kgConfalonieri
4
56 kgBujak
7
63 kgSmulders
9
51 kgMajerus
12
56 kgConsonni
15
59 kgKuijpers
16
73 kgGerritse
17
59 kgPowless
20
59 kgDemey
25
56 kgvan den Broek-Blaak
28
64 kgGreenwood
33
60 kgDe Wilde
47
62 kgLee
49
53 kgFranz
50
52 kgGuarischi
51
57 kgShapira
56
58 kgCouzens
58
59 kgBertizzolo
63
54 kgGonzález
66
51 kgVan Dam
68
58 kg
Weight (KG) →
Result →
73
51
1
68
# | Rider | Weight (KG) |
---|---|---|
1 | WIEBES Lorena | 60 |
4 | CONFALONIERI Maria Giulia | 56 |
7 | BUJAK Eugenia | 63 |
9 | SMULDERS Silke | 51 |
12 | MAJERUS Christine | 56 |
15 | CONSONNI Chiara | 59 |
16 | KUIJPERS Evy | 73 |
17 | GERRITSE Femke | 59 |
20 | POWLESS Shayna | 59 |
25 | DEMEY Valerie | 56 |
28 | VAN DEN BROEK-BLAAK Chantal | 64 |
33 | GREENWOOD Monica | 60 |
47 | DE WILDE Julie | 62 |
49 | LEE Lucy | 53 |
50 | FRANZ Heidi | 52 |
51 | GUARISCHI Barbara | 57 |
56 | SHAPIRA Omer | 58 |
58 | COUZENS Millie | 59 |
63 | BERTIZZOLO Sofia | 54 |
66 | GONZÁLEZ Alicia | 51 |
68 | VAN DAM Sarah | 58 |