Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 8
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Boev
1
74 kgButs
2
68 kgNikolaev
4
66 kgLagutin
5
68 kgZakarin
7
67 kgFoliforov
8
61 kgFirsanov
9
58 kgVasylyuk
10
65 kgKrivtsov
11
72 kgLagkuti
13
68 kgVasilyev
14
70 kgErshov
15
70 kgZemlyakov
25
70 kgEdmüller
33
70 kgKlimov
36
69 kgRamanau
38
68 kgZubov
40
72 kgLuchshenko
43
63 kg
1
74 kgButs
2
68 kgNikolaev
4
66 kgLagutin
5
68 kgZakarin
7
67 kgFoliforov
8
61 kgFirsanov
9
58 kgVasylyuk
10
65 kgKrivtsov
11
72 kgLagkuti
13
68 kgVasilyev
14
70 kgErshov
15
70 kgZemlyakov
25
70 kgEdmüller
33
70 kgKlimov
36
69 kgRamanau
38
68 kgZubov
40
72 kgLuchshenko
43
63 kg
Weight (KG) →
Result →
74
58
1
43
# | Rider | Weight (KG) |
---|---|---|
1 | BOEV Igor | 74 |
2 | BUTS Vitaliy | 68 |
4 | NIKOLAEV Sergey | 66 |
5 | LAGUTIN Sergey | 68 |
7 | ZAKARIN Ilnur | 67 |
8 | FOLIFOROV Alexander | 61 |
9 | FIRSANOV Sergey | 58 |
10 | VASYLYUK Andriy | 65 |
11 | KRIVTSOV Dmytro | 72 |
13 | LAGKUTI Sergiy | 68 |
14 | VASILYEV Maksym | 70 |
15 | ERSHOV Artur | 70 |
25 | ZEMLYAKOV Oleg | 70 |
33 | EDMÜLLER Benjamin | 70 |
36 | KLIMOV Sergey | 69 |
38 | RAMANAU Raman | 68 |
40 | ZUBOV Matvey | 72 |
43 | LUCHSHENKO Sergey | 63 |