Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 28
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Høj
1
80 kgHammond
2
71 kgBoven
3
65 kgDekker
4
66 kgPronk
5
73 kgVerheyen
6
68 kgFofonov
8
65 kgOmloop
9
78 kgCapelle
12
75 kgPankov
13
72 kgFlammang
15
80 kgYakovlev
17
70 kgScheirlinckx
18
67 kgde Groot
19
65 kgDe Neef
20
75 kgRoesems
21
81 kgMarichal
27
72 kgHayman
28
78 kgMoreau
29
77 kgLotz
31
76 kg
1
80 kgHammond
2
71 kgBoven
3
65 kgDekker
4
66 kgPronk
5
73 kgVerheyen
6
68 kgFofonov
8
65 kgOmloop
9
78 kgCapelle
12
75 kgPankov
13
72 kgFlammang
15
80 kgYakovlev
17
70 kgScheirlinckx
18
67 kgde Groot
19
65 kgDe Neef
20
75 kgRoesems
21
81 kgMarichal
27
72 kgHayman
28
78 kgMoreau
29
77 kgLotz
31
76 kg
Weight (KG) →
Result →
81
65
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | HØJ Frank | 80 |
2 | HAMMOND Roger | 71 |
3 | BOVEN Jan | 65 |
4 | DEKKER Erik | 66 |
5 | PRONK Matthé | 73 |
6 | VERHEYEN Geert | 68 |
8 | FOFONOV Dmitriy | 65 |
9 | OMLOOP Geert | 78 |
12 | CAPELLE Ludovic | 75 |
13 | PANKOV Oleg | 72 |
15 | FLAMMANG Tom | 80 |
17 | YAKOVLEV Serguei | 70 |
18 | SCHEIRLINCKX Bert | 67 |
19 | DE GROOT Bram | 65 |
20 | DE NEEF Steven | 75 |
21 | ROESEMS Bert | 81 |
27 | MARICHAL Thierry | 72 |
28 | HAYMAN Mathew | 78 |
29 | MOREAU Francis | 77 |
31 | LOTZ Marc | 76 |