Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 57
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Farazijn
2
69 kgHammond
4
71 kgMarichal
5
72 kgVierhouten
6
71 kgVoskamp
7
75 kgOmloop
8
78 kgChavanel
9
73 kgPlanckaert
10
70 kgHunt
11
76 kgMeirhaeghe
13
70 kgCretskens
16
75 kgWauters
17
73 kgMcEwen
18
67 kgGardeyn
19
75 kgClain
21
59 kgDetilloux
24
62 kgDe Groote
28
71 kgDe Waele
30
71 kg
2
69 kgHammond
4
71 kgMarichal
5
72 kgVierhouten
6
71 kgVoskamp
7
75 kgOmloop
8
78 kgChavanel
9
73 kgPlanckaert
10
70 kgHunt
11
76 kgMeirhaeghe
13
70 kgCretskens
16
75 kgWauters
17
73 kgMcEwen
18
67 kgGardeyn
19
75 kgClain
21
59 kgDetilloux
24
62 kgDe Groote
28
71 kgDe Waele
30
71 kg
Weight (KG) →
Result →
78
59
2
30
# | Rider | Weight (KG) |
---|---|---|
2 | FARAZIJN Peter | 69 |
4 | HAMMOND Roger | 71 |
5 | MARICHAL Thierry | 72 |
6 | VIERHOUTEN Aart | 71 |
7 | VOSKAMP Bart | 75 |
8 | OMLOOP Geert | 78 |
9 | CHAVANEL Sylvain | 73 |
10 | PLANCKAERT Jo | 70 |
11 | HUNT Jeremy | 76 |
13 | MEIRHAEGHE Filip | 70 |
16 | CRETSKENS Wilfried | 75 |
17 | WAUTERS Marc | 73 |
18 | MCEWEN Robbie | 67 |
19 | GARDEYN Gorik | 75 |
21 | CLAIN Médéric | 59 |
24 | DETILLOUX Christophe | 62 |
28 | DE GROOTE Thierry | 71 |
30 | DE WAELE Bert | 71 |