Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 36
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Bäckstedt
1
94 kgDevolder
2
72 kgSijmens
5
69 kgLöwik
6
72 kgLeysen
8
75 kgVerstraeten
9
65 kgVestøl
10
85 kgVan Huffel
11
66 kgPaulissen
12
65 kgStreel
14
69 kgKuyckx
15
68 kgSchmitz
20
77 kgCoenen
21
67 kgRinero
22
65 kgScheirlinckx
23
78 kgvan Dooren
25
59 kgBak
28
76 kg
1
94 kgDevolder
2
72 kgSijmens
5
69 kgLöwik
6
72 kgLeysen
8
75 kgVerstraeten
9
65 kgVestøl
10
85 kgVan Huffel
11
66 kgPaulissen
12
65 kgStreel
14
69 kgKuyckx
15
68 kgSchmitz
20
77 kgCoenen
21
67 kgRinero
22
65 kgScheirlinckx
23
78 kgvan Dooren
25
59 kgBak
28
76 kg
Weight (KG) →
Result →
94
59
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | BÄCKSTEDT Magnus | 94 |
2 | DEVOLDER Stijn | 72 |
5 | SIJMENS Nico | 69 |
6 | LÖWIK Gerben | 72 |
8 | LEYSEN Bart | 75 |
9 | VERSTRAETEN Jan | 65 |
10 | VESTØL Bjørnar | 85 |
11 | VAN HUFFEL Wim | 66 |
12 | PAULISSEN Roel | 65 |
14 | STREEL Marc | 69 |
15 | KUYCKX Jan | 68 |
20 | SCHMITZ Bram | 77 |
21 | COENEN Johan | 67 |
22 | RINERO Christophe | 65 |
23 | SCHEIRLINCKX Staf | 78 |
25 | VAN DOOREN Bas | 59 |
28 | BAK Lars Ytting | 76 |