Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 93
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Wiebes
1
60 kgKuijpers
4
73 kgCampbell
10
63 kgVerhulst-Wild
13
58 kgVan Velzen
14
57 kgSels
16
65 kgAlvarado
18
51 kgHenderson
21
58 kgDelbaere
28
51 kgDruyts
32
62 kgAllin
41
58 kgLooser
42
57 kgBeckers
45
67 kgTruyen
49
55 kgvan der Hulst
55
66 kgAndres
56
62 kgSomrat
60
56 kgMorichon
64
56 kgBeekhuis
65
58 kgDocx
68
52 kgVan de Velde
83
58 kgde Baat
88
56 kgVan Loy
90
65 kg
1
60 kgKuijpers
4
73 kgCampbell
10
63 kgVerhulst-Wild
13
58 kgVan Velzen
14
57 kgSels
16
65 kgAlvarado
18
51 kgHenderson
21
58 kgDelbaere
28
51 kgDruyts
32
62 kgAllin
41
58 kgLooser
42
57 kgBeckers
45
67 kgTruyen
49
55 kgvan der Hulst
55
66 kgAndres
56
62 kgSomrat
60
56 kgMorichon
64
56 kgBeekhuis
65
58 kgDocx
68
52 kgVan de Velde
83
58 kgde Baat
88
56 kgVan Loy
90
65 kg
Weight (KG) →
Result →
73
51
1
90
# | Rider | Weight (KG) |
---|---|---|
1 | WIEBES Lorena | 60 |
4 | KUIJPERS Evy | 73 |
10 | CAMPBELL Teniel | 63 |
13 | VERHULST-WILD Gladys | 58 |
14 | VAN VELZEN Bryony | 57 |
16 | SELS Loes | 65 |
18 | ALVARADO Ceylin del Carmen | 51 |
21 | HENDERSON Anna | 58 |
28 | DELBAERE Fien | 51 |
32 | DRUYTS Kelly | 62 |
41 | ALLIN Pauline | 58 |
42 | LOOSER Vera | 57 |
45 | BECKERS Isabelle | 67 |
49 | TRUYEN Marthe | 55 |
55 | VAN DER HULST Amber | 66 |
56 | ANDRES Michelle | 62 |
60 | SOMRAT Phetdarin | 56 |
64 | MORICHON Anaïs | 56 |
65 | BEEKHUIS Teuntje | 58 |
68 | DOCX Mieke | 52 |
83 | VAN DE VELDE Julie | 58 |
88 | DE BAAT Kim | 56 |
90 | VAN LOY Ellen | 65 |