Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 26
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Kopp
1
68 kgVan Impe
2
75 kgLeukemans
3
67 kgLöwik
4
72 kgDe Neef
6
75 kgKnees
7
81 kgBoven
8
65 kgten Dam
9
67 kgBaguet
10
67 kgPronk
11
73 kgWeening
12
68 kgD'Hollander
14
74 kgVeneberg
15
75 kgDe Schrooder
18
61 kgCaethoven
19
67 kgde Wilde
22
74 kgCruz
27
66 kgScheirlinckx
28
67 kgGlasner
29
72 kgPoitschke
30
73 kgLemoine
31
73 kg
1
68 kgVan Impe
2
75 kgLeukemans
3
67 kgLöwik
4
72 kgDe Neef
6
75 kgKnees
7
81 kgBoven
8
65 kgten Dam
9
67 kgBaguet
10
67 kgPronk
11
73 kgWeening
12
68 kgD'Hollander
14
74 kgVeneberg
15
75 kgDe Schrooder
18
61 kgCaethoven
19
67 kgde Wilde
22
74 kgCruz
27
66 kgScheirlinckx
28
67 kgGlasner
29
72 kgPoitschke
30
73 kgLemoine
31
73 kg
Weight (KG) →
Result →
81
61
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | KOPP David | 68 |
2 | VAN IMPE Kevin | 75 |
3 | LEUKEMANS Björn | 67 |
4 | LÖWIK Gerben | 72 |
6 | DE NEEF Steven | 75 |
7 | KNEES Christian | 81 |
8 | BOVEN Jan | 65 |
9 | TEN DAM Laurens | 67 |
10 | BAGUET Serge | 67 |
11 | PRONK Matthé | 73 |
12 | WEENING Pieter | 68 |
14 | D'HOLLANDER Glenn | 74 |
15 | VENEBERG Thorwald | 75 |
18 | DE SCHROODER Benny | 61 |
19 | CAETHOVEN Steven | 67 |
22 | DE WILDE Sjef | 74 |
27 | CRUZ Antonio | 66 |
28 | SCHEIRLINCKX Bert | 67 |
29 | GLASNER Björn | 72 |
30 | POITSCHKE Enrico | 73 |
31 | LEMOINE Cyril | 73 |