Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.8 * weight - 100
This means that on average for every extra kilogram weight a rider loses 1.8 positions in the result.
Ovion
5
64 kgViejo
8
64 kgSteinmayr
9
63 kgHuelamo
11
61 kgHubschmid
12
74 kgMitteregger
15
68 kgSchmid
17
64 kgGaida
18
65 kgStarkov
20
73 kgKoslar
23
69 kgDuchemin
24
60 kgThalmann
25
75 kgDidier
28
67 kgHassink
30
71 kgNelyubin
31
71 kgSutter
35
70 kgSzurkowski
36
77 kgCzechowski
40
75 kgPriem
43
75 kgHanusik
50
74 kgSchär
55
75 kg
5
64 kgViejo
8
64 kgSteinmayr
9
63 kgHuelamo
11
61 kgHubschmid
12
74 kgMitteregger
15
68 kgSchmid
17
64 kgGaida
18
65 kgStarkov
20
73 kgKoslar
23
69 kgDuchemin
24
60 kgThalmann
25
75 kgDidier
28
67 kgHassink
30
71 kgNelyubin
31
71 kgSutter
35
70 kgSzurkowski
36
77 kgCzechowski
40
75 kgPriem
43
75 kgHanusik
50
74 kgSchär
55
75 kg
Weight (KG) →
Result →
77
60
5
55
# | Rider | Weight (KG) |
---|---|---|
5 | OVION Régis | 64 |
8 | VIEJO José Luis | 64 |
9 | STEINMAYR Wolfgang | 63 |
11 | HUELAMO Jaime | 61 |
12 | HUBSCHMID Bruno | 74 |
15 | MITTEREGGER Rudolf | 68 |
17 | SCHMID Iwan | 64 |
18 | GAIDA Alfred | 65 |
20 | STARKOV Anatoliy | 73 |
23 | KOSLAR Dieter | 69 |
24 | DUCHEMIN Marcel | 60 |
25 | THALMANN Robert | 75 |
28 | DIDIER Lucien | 67 |
30 | HASSINK Arie | 71 |
31 | NELYUBIN Vladislav | 71 |
35 | SUTTER Ueli | 70 |
36 | SZURKOWSKI Ryszard | 77 |
40 | CZECHOWSKI Zenon | 75 |
43 | PRIEM Cees | 75 |
50 | HANUSIK Zygmunt | 74 |
55 | SCHÄR Hugo | 75 |