Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 47
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Carrara
1
67 kgSijmens
2
69 kgVan Goolen
3
70 kgTankink
4
71 kgElmiger
5
73 kgSinkewitz
6
63 kgRast
7
80 kgPellizotti
9
64 kgCancellara
10
80 kgWielinga
11
68 kgPietropolli
12
61 kgWillems
13
67 kgEisel
14
74 kgKirchen
16
68 kgLe Mével
18
61 kgZaugg
19
58 kgInaudi
22
67 kgAlbasini
25
65 kgMutsaars
28
67 kgScholz
29
60 kgDavis
31
60 kgCharteau
32
67 kgReihs
40
75 kg
1
67 kgSijmens
2
69 kgVan Goolen
3
70 kgTankink
4
71 kgElmiger
5
73 kgSinkewitz
6
63 kgRast
7
80 kgPellizotti
9
64 kgCancellara
10
80 kgWielinga
11
68 kgPietropolli
12
61 kgWillems
13
67 kgEisel
14
74 kgKirchen
16
68 kgLe Mével
18
61 kgZaugg
19
58 kgInaudi
22
67 kgAlbasini
25
65 kgMutsaars
28
67 kgScholz
29
60 kgDavis
31
60 kgCharteau
32
67 kgReihs
40
75 kg
Weight (KG) →
Result →
80
58
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | CARRARA Matteo | 67 |
2 | SIJMENS Nico | 69 |
3 | VAN GOOLEN Jurgen | 70 |
4 | TANKINK Bram | 71 |
5 | ELMIGER Martin | 73 |
6 | SINKEWITZ Patrik | 63 |
7 | RAST Grégory | 80 |
9 | PELLIZOTTI Franco | 64 |
10 | CANCELLARA Fabian | 80 |
11 | WIELINGA Remmert | 68 |
12 | PIETROPOLLI Daniele | 61 |
13 | WILLEMS Frederik | 67 |
14 | EISEL Bernhard | 74 |
16 | KIRCHEN Kim | 68 |
18 | LE MÉVEL Christophe | 61 |
19 | ZAUGG Oliver | 58 |
22 | INAUDI Nicolas | 67 |
25 | ALBASINI Michael | 65 |
28 | MUTSAARS Ronald | 67 |
29 | SCHOLZ Ronny | 60 |
31 | DAVIS Scott | 60 |
32 | CHARTEAU Anthony | 67 |
40 | REIHS Michael | 75 |