Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 60
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Popovych
2
64 kgQuinziato
4
74 kgVan Goolen
6
70 kgBoonen
7
82 kgBileka
9
65 kgLarsson
10
77 kgDe Weert
11
70 kgAlbasini
12
65 kgLoosli
13
71 kgAnzà
17
58 kgHervé
19
60 kgGerrans
20
62 kgLagutin
21
68 kgWeening
24
68 kgPineau
25
65 kgScarponi
26
62 kgBates
28
61 kgTalabardon
30
67 kgPortal
31
70 kgDietziker
37
67 kgMugerli
38
68 kg
2
64 kgQuinziato
4
74 kgVan Goolen
6
70 kgBoonen
7
82 kgBileka
9
65 kgLarsson
10
77 kgDe Weert
11
70 kgAlbasini
12
65 kgLoosli
13
71 kgAnzà
17
58 kgHervé
19
60 kgGerrans
20
62 kgLagutin
21
68 kgWeening
24
68 kgPineau
25
65 kgScarponi
26
62 kgBates
28
61 kgTalabardon
30
67 kgPortal
31
70 kgDietziker
37
67 kgMugerli
38
68 kg
Weight (KG) →
Result →
82
58
2
38
# | Rider | Weight (KG) |
---|---|---|
2 | POPOVYCH Yaroslav | 64 |
4 | QUINZIATO Manuel | 74 |
6 | VAN GOOLEN Jurgen | 70 |
7 | BOONEN Tom | 82 |
9 | BILEKA Volodymyr | 65 |
10 | LARSSON Gustav Erik | 77 |
11 | DE WEERT Kevin | 70 |
12 | ALBASINI Michael | 65 |
13 | LOOSLI David | 71 |
17 | ANZÀ Santo | 58 |
19 | HERVÉ Cédric | 60 |
20 | GERRANS Simon | 62 |
21 | LAGUTIN Sergey | 68 |
24 | WEENING Pieter | 68 |
25 | PINEAU Jérôme | 65 |
26 | SCARPONI Michele | 62 |
28 | BATES Gene | 61 |
30 | TALABARDON Yannick | 67 |
31 | PORTAL Nicolas | 70 |
37 | DIETZIKER Andreas | 67 |
38 | MUGERLI Matej | 68 |