Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 52
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Rast
1
80 kgLoosli
3
71 kgAlbasini
5
65 kgLarsson
6
77 kgStrgar
7
62 kgGerrans
8
62 kgFranzoi
10
70 kgBožič
11
70 kgVandborg
13
75 kgKessiakoff
14
61 kgStalder
17
58 kgKohl
18
61 kgIglinskiy
19
67 kgChavanel
24
77 kgMarin
27
67 kgGazvoda
29
72 kgCoyot
30
76 kgBazayev
32
62 kgZaugg
35
58 kgBates
42
61 kg
1
80 kgLoosli
3
71 kgAlbasini
5
65 kgLarsson
6
77 kgStrgar
7
62 kgGerrans
8
62 kgFranzoi
10
70 kgBožič
11
70 kgVandborg
13
75 kgKessiakoff
14
61 kgStalder
17
58 kgKohl
18
61 kgIglinskiy
19
67 kgChavanel
24
77 kgMarin
27
67 kgGazvoda
29
72 kgCoyot
30
76 kgBazayev
32
62 kgZaugg
35
58 kgBates
42
61 kg
Weight (KG) →
Result →
80
58
1
42
# | Rider | Weight (KG) |
---|---|---|
1 | RAST Grégory | 80 |
3 | LOOSLI David | 71 |
5 | ALBASINI Michael | 65 |
6 | LARSSON Gustav Erik | 77 |
7 | STRGAR Matic | 62 |
8 | GERRANS Simon | 62 |
10 | FRANZOI Enrico | 70 |
11 | BOŽIČ Borut | 70 |
13 | VANDBORG Brian Bach | 75 |
14 | KESSIAKOFF Fredrik | 61 |
17 | STALDER Florian | 58 |
18 | KOHL Bernhard | 61 |
19 | IGLINSKIY Maxim | 67 |
24 | CHAVANEL Sébastien | 77 |
27 | MARIN Matej | 67 |
29 | GAZVODA Gregor | 72 |
30 | COYOT Arnaud | 76 |
32 | BAZAYEV Assan | 62 |
35 | ZAUGG Oliver | 58 |
42 | BATES Gene | 61 |