Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight - 77
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
Gusev
1
67 kgStalder
3
58 kgBazayev
4
62 kgPauwels
5
65 kgRuss
6
62 kgIglinskiy
7
67 kgTschopp
9
62 kgKozontchuk
11
75 kgSchwab
12
65 kgBrajkovič
15
60 kgFirsanov
17
58 kgDuggan
25
60 kgMugerli
27
68 kgDietziker
33
67 kgStrgar
35
62 kgSantaromita
39
58 kgShpilevsky
43
78 kgHovelijnck
44
75 kgMusiol
46
70 kgSaramotins
53
75 kgvan Hummel
54
64 kgKlostergaard
58
69 kgKocjan
63
72 kg
1
67 kgStalder
3
58 kgBazayev
4
62 kgPauwels
5
65 kgRuss
6
62 kgIglinskiy
7
67 kgTschopp
9
62 kgKozontchuk
11
75 kgSchwab
12
65 kgBrajkovič
15
60 kgFirsanov
17
58 kgDuggan
25
60 kgMugerli
27
68 kgDietziker
33
67 kgStrgar
35
62 kgSantaromita
39
58 kgShpilevsky
43
78 kgHovelijnck
44
75 kgMusiol
46
70 kgSaramotins
53
75 kgvan Hummel
54
64 kgKlostergaard
58
69 kgKocjan
63
72 kg
Weight (KG) →
Result →
78
58
1
63
# | Rider | Weight (KG) |
---|---|---|
1 | GUSEV Vladimir | 67 |
3 | STALDER Florian | 58 |
4 | BAZAYEV Assan | 62 |
5 | PAUWELS Serge | 65 |
6 | RUSS Matthias | 62 |
7 | IGLINSKIY Maxim | 67 |
9 | TSCHOPP Johann | 62 |
11 | KOZONTCHUK Dmitry | 75 |
12 | SCHWAB Hubert | 65 |
15 | BRAJKOVIČ Janez | 60 |
17 | FIRSANOV Sergey | 58 |
25 | DUGGAN Timothy | 60 |
27 | MUGERLI Matej | 68 |
33 | DIETZIKER Andreas | 67 |
35 | STRGAR Matic | 62 |
39 | SANTAROMITA Ivan | 58 |
43 | SHPILEVSKY Boris | 78 |
44 | HOVELIJNCK Kurt | 75 |
46 | MUSIOL Daniel | 70 |
53 | SARAMOTINS Aleksejs | 75 |
54 | VAN HUMMEL Kenny | 64 |
58 | KLOSTERGAARD Kasper | 69 |
63 | KOCJAN Jure | 72 |