Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Stalder
1
58 kgSchleck
2
68 kgVogel
3
66 kgReus
4
70 kgKozontchuk
7
75 kgGreipel
9
80 kgClement
10
66 kgHeijboer
11
78 kgKlostergaard
14
69 kgBole
15
69 kgBrajkovič
17
60 kgMorabito
18
74 kgFirsanov
21
58 kgDietziker
22
67 kgLeezer
24
76 kgStrgar
25
62 kgSchwab
26
65 kgRuss
29
62 kgWagner
32
75 kgZahner
37
73 kgGottfried
40
60 kg
1
58 kgSchleck
2
68 kgVogel
3
66 kgReus
4
70 kgKozontchuk
7
75 kgGreipel
9
80 kgClement
10
66 kgHeijboer
11
78 kgKlostergaard
14
69 kgBole
15
69 kgBrajkovič
17
60 kgMorabito
18
74 kgFirsanov
21
58 kgDietziker
22
67 kgLeezer
24
76 kgStrgar
25
62 kgSchwab
26
65 kgRuss
29
62 kgWagner
32
75 kgZahner
37
73 kgGottfried
40
60 kg
Weight (KG) →
Result →
80
58
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | STALDER Florian | 58 |
2 | SCHLECK Andy | 68 |
3 | VOGEL Florian | 66 |
4 | REUS Kai | 70 |
7 | KOZONTCHUK Dmitry | 75 |
9 | GREIPEL André | 80 |
10 | CLEMENT Stef | 66 |
11 | HEIJBOER Mathieu | 78 |
14 | KLOSTERGAARD Kasper | 69 |
15 | BOLE Grega | 69 |
17 | BRAJKOVIČ Janez | 60 |
18 | MORABITO Steve | 74 |
21 | FIRSANOV Sergey | 58 |
22 | DIETZIKER Andreas | 67 |
24 | LEEZER Tom | 76 |
25 | STRGAR Matic | 62 |
26 | SCHWAB Hubert | 65 |
29 | RUSS Matthias | 62 |
32 | WAGNER Robert | 75 |
37 | ZAHNER Simon | 73 |
40 | GOTTFRIED Alexander | 60 |