Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Golčer
1
66.5 kgMorabito
2
74 kgKvasina
4
72 kgRetschke
5
66 kgGerrans
6
62 kgMoos
7
64 kgMahorič
8
68 kgGerdemann
12
71 kgRuss
14
62 kgTotschnig
16
62 kgPichler
18
70 kgGabriel
19
60 kgPietropolli
20
61 kgde Baat
21
66 kgSalerno
22
64 kgSchillinger
29
72 kgMamos
31
72 kgVanthourenhout
32
65 kg
1
66.5 kgMorabito
2
74 kgKvasina
4
72 kgRetschke
5
66 kgGerrans
6
62 kgMoos
7
64 kgMahorič
8
68 kgGerdemann
12
71 kgRuss
14
62 kgTotschnig
16
62 kgPichler
18
70 kgGabriel
19
60 kgPietropolli
20
61 kgde Baat
21
66 kgSalerno
22
64 kgSchillinger
29
72 kgMamos
31
72 kgVanthourenhout
32
65 kg
Weight (KG) →
Result →
74
60
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | GOLČER Jure | 66.5 |
2 | MORABITO Steve | 74 |
4 | KVASINA Matija | 72 |
5 | RETSCHKE Robert | 66 |
6 | GERRANS Simon | 62 |
7 | MOOS Alexandre | 64 |
8 | MAHORIČ Mitja | 68 |
12 | GERDEMANN Linus | 71 |
14 | RUSS Matthias | 62 |
16 | TOTSCHNIG Georg | 62 |
18 | PICHLER Michael | 70 |
19 | GABRIEL Frédéric | 60 |
20 | PIETROPOLLI Daniele | 61 |
21 | DE BAAT Arjen | 66 |
22 | SALERNO Cristiano | 64 |
29 | SCHILLINGER Andreas | 72 |
31 | MAMOS Philipp | 72 |
32 | VANTHOURENHOUT Sven | 65 |