Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 112
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Boonen
4
82 kgSteegmans
5
82 kgDe Weert
10
70 kgGiling
11
72 kgRosseler
12
78 kgAbakoumov
15
68 kgDockx
16
64 kgCoenen
31
67 kgVan Hecke
32
69 kgDe Vocht
33
78 kgVanthourenhout
39
65 kgAernouts
40
60 kgvan Hummel
46
64 kgCoutouly
50
72 kgBodnar
61
68 kgMertens
62
67 kgPosthuma
69
76 kgLisabeth
76
75 kgNuyens
78
68 kg
4
82 kgSteegmans
5
82 kgDe Weert
10
70 kgGiling
11
72 kgRosseler
12
78 kgAbakoumov
15
68 kgDockx
16
64 kgCoenen
31
67 kgVan Hecke
32
69 kgDe Vocht
33
78 kgVanthourenhout
39
65 kgAernouts
40
60 kgvan Hummel
46
64 kgCoutouly
50
72 kgBodnar
61
68 kgMertens
62
67 kgPosthuma
69
76 kgLisabeth
76
75 kgNuyens
78
68 kg
Weight (KG) →
Result →
82
60
4
78
# | Rider | Weight (KG) |
---|---|---|
4 | BOONEN Tom | 82 |
5 | STEEGMANS Gert | 82 |
10 | DE WEERT Kevin | 70 |
11 | GILING Bas | 72 |
12 | ROSSELER Sébastien | 78 |
15 | ABAKOUMOV Igor | 68 |
16 | DOCKX Bart | 64 |
31 | COENEN Johan | 67 |
32 | VAN HECKE Preben | 69 |
33 | DE VOCHT Wim | 78 |
39 | VANTHOURENHOUT Sven | 65 |
40 | AERNOUTS Bart | 60 |
46 | VAN HUMMEL Kenny | 64 |
50 | COUTOULY Cédric | 72 |
61 | BODNAR Łukasz | 68 |
62 | MERTENS Pieter | 67 |
69 | POSTHUMA Joost | 76 |
76 | LISABETH Kenny | 75 |
78 | NUYENS Nick | 68 |