Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 80
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Caethoven
1
67 kgde Wilde
5
74 kgvan Hummel
6
64 kgVeelers
7
75 kgHovelijnck
8
75 kgGiling
9
72 kgDe Vocht
20
78 kgDuijn
24
73 kgVerbist
26
73 kgDe Fauw
28
77 kgDehaes
33
73 kgSchmets
49
85 kgDekkers
55
72 kgIsta
60
70 kgVandenbergh
66
86 kgGilbert
80
60 kgNeirynck
82
71 kgLisabeth
83
75 kgElijzen
86
80 kgSutherland
93
75 kgHonig
99
61 kgDekker
100
69 kg
1
67 kgde Wilde
5
74 kgvan Hummel
6
64 kgVeelers
7
75 kgHovelijnck
8
75 kgGiling
9
72 kgDe Vocht
20
78 kgDuijn
24
73 kgVerbist
26
73 kgDe Fauw
28
77 kgDehaes
33
73 kgSchmets
49
85 kgDekkers
55
72 kgIsta
60
70 kgVandenbergh
66
86 kgGilbert
80
60 kgNeirynck
82
71 kgLisabeth
83
75 kgElijzen
86
80 kgSutherland
93
75 kgHonig
99
61 kgDekker
100
69 kg
Weight (KG) →
Result →
86
60
1
100
# | Rider | Weight (KG) |
---|---|---|
1 | CAETHOVEN Steven | 67 |
5 | DE WILDE Sjef | 74 |
6 | VAN HUMMEL Kenny | 64 |
7 | VEELERS Tom | 75 |
8 | HOVELIJNCK Kurt | 75 |
9 | GILING Bas | 72 |
20 | DE VOCHT Wim | 78 |
24 | DUIJN Huub | 73 |
26 | VERBIST Evert | 73 |
28 | DE FAUW Dimitri | 77 |
33 | DEHAES Kenny | 73 |
49 | SCHMETS David | 85 |
55 | DEKKERS Hans | 72 |
60 | ISTA Kevyn | 70 |
66 | VANDENBERGH Stijn | 86 |
80 | GILBERT Jérôme | 60 |
82 | NEIRYNCK Kevin | 71 |
83 | LISABETH Kenny | 75 |
86 | ELIJZEN Michiel | 80 |
93 | SUTHERLAND Rory | 75 |
99 | HONIG Reinier | 61 |
100 | DEKKER Thomas | 69 |