Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 24
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Arndt
1
59 kgVžesniauskaitė
7
57 kgHeeb
10
51 kgSoeder
15
52 kgMatusiak
21
58 kgArmstrong
26
58 kgCantele
27
58 kgBoyarskaya
37
67 kgLindberg
38
63 kgAndersen
48
68 kgSandig
49
62 kgCorneo
50
54 kgBecker
53
64 kgRossner
68
64 kgTchalykh
72
56 kgValsecchi
76
58 kgBrzeźna
103
56 kg
1
59 kgVžesniauskaitė
7
57 kgHeeb
10
51 kgSoeder
15
52 kgMatusiak
21
58 kgArmstrong
26
58 kgCantele
27
58 kgBoyarskaya
37
67 kgLindberg
38
63 kgAndersen
48
68 kgSandig
49
62 kgCorneo
50
54 kgBecker
53
64 kgRossner
68
64 kgTchalykh
72
56 kgValsecchi
76
58 kgBrzeźna
103
56 kg
Weight (KG) →
Result →
68
51
1
103
# | Rider | Weight (KG) |
---|---|---|
1 | ARNDT Judith | 59 |
7 | VŽESNIAUSKAITĖ Modesta | 57 |
10 | HEEB Barbara | 51 |
15 | SOEDER Christiane | 52 |
21 | MATUSIAK Bogumiła | 58 |
26 | ARMSTRONG Kristin | 58 |
27 | CANTELE Noemi | 58 |
37 | BOYARSKAYA Natalia | 67 |
38 | LINDBERG Madeleine | 63 |
48 | ANDERSEN Mette | 68 |
49 | SANDIG Madeleine | 62 |
50 | CORNEO Sigrid | 54 |
53 | BECKER Charlotte | 64 |
68 | ROSSNER Petra | 64 |
72 | TCHALYKH Elena | 56 |
76 | VALSECCHI Silvia | 58 |
103 | BRZEŹNA Paulina | 56 |