Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.8 * weight - 62
This means that on average for every extra kilogram weight a rider loses 1.8 positions in the result.
Heeb
3
51 kgMatusiak
7
58 kgDoppmann
11
55 kgSoeder
12
52 kgByberg
15
56 kgBrzeźna
17
56 kgKupfernagel
30
68 kgMartisova
36
64 kgBecker
38
64 kgBoyarskaya
39
67 kgZabelinskaya
52
52 kgPawlowska
70
60 kgFernandes Silva
74
52 kgHatteland Lima
81
65 kgMarunde
88
58 kgRossner
105
64 kg
3
51 kgMatusiak
7
58 kgDoppmann
11
55 kgSoeder
12
52 kgByberg
15
56 kgBrzeźna
17
56 kgKupfernagel
30
68 kgMartisova
36
64 kgBecker
38
64 kgBoyarskaya
39
67 kgZabelinskaya
52
52 kgPawlowska
70
60 kgFernandes Silva
74
52 kgHatteland Lima
81
65 kgMarunde
88
58 kgRossner
105
64 kg
Weight (KG) →
Result →
68
51
3
105
# | Rider | Weight (KG) |
---|---|---|
3 | HEEB Barbara | 51 |
7 | MATUSIAK Bogumiła | 58 |
11 | DOPPMANN Priska | 55 |
12 | SOEDER Christiane | 52 |
15 | BYBERG Lene | 56 |
17 | BRZEŹNA Paulina | 56 |
30 | KUPFERNAGEL Hanka | 68 |
36 | MARTISOVA Julia | 64 |
38 | BECKER Charlotte | 64 |
39 | BOYARSKAYA Natalia | 67 |
52 | ZABELINSKAYA Olga | 52 |
70 | PAWLOWSKA Katarzyna | 60 |
74 | FERNANDES SILVA Janildes | 52 |
81 | HATTELAND LIMA Tone | 65 |
88 | MARUNDE Regina | 58 |
105 | ROSSNER Petra | 64 |