Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 24
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Rossner
1
64 kgDoppmann
3
55 kgHeeb
7
51 kgMartisova
8
64 kgBecker
17
64 kgFernandes Silva
18
52 kgByberg
29
56 kgBoyarskaya
43
67 kgBrzeźna
48
56 kgMatusiak
49
58 kgKupfernagel
55
68 kgSoeder
59
52 kgZabelinskaya
63
52 kgHatteland Lima
68
65 kgMarunde
84
58 kgPawlowska
96
60 kg
1
64 kgDoppmann
3
55 kgHeeb
7
51 kgMartisova
8
64 kgBecker
17
64 kgFernandes Silva
18
52 kgByberg
29
56 kgBoyarskaya
43
67 kgBrzeźna
48
56 kgMatusiak
49
58 kgKupfernagel
55
68 kgSoeder
59
52 kgZabelinskaya
63
52 kgHatteland Lima
68
65 kgMarunde
84
58 kgPawlowska
96
60 kg
Weight (KG) →
Result →
68
51
1
96
# | Rider | Weight (KG) |
---|---|---|
1 | ROSSNER Petra | 64 |
3 | DOPPMANN Priska | 55 |
7 | HEEB Barbara | 51 |
8 | MARTISOVA Julia | 64 |
17 | BECKER Charlotte | 64 |
18 | FERNANDES SILVA Janildes | 52 |
29 | BYBERG Lene | 56 |
43 | BOYARSKAYA Natalia | 67 |
48 | BRZEŹNA Paulina | 56 |
49 | MATUSIAK Bogumiła | 58 |
55 | KUPFERNAGEL Hanka | 68 |
59 | SOEDER Christiane | 52 |
63 | ZABELINSKAYA Olga | 52 |
68 | HATTELAND LIMA Tone | 65 |
84 | MARUNDE Regina | 58 |
96 | PAWLOWSKA Katarzyna | 60 |