Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 43
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Kupfernagel
2
68 kgSoeder
3
52 kgDoppmann
5
55 kgRossner
11
64 kgMartisova
17
64 kgZabelinskaya
19
52 kgMarunde
23
58 kgBecker
25
64 kgBoyarskaya
34
67 kgMatusiak
36
58 kgByberg
42
56 kgPawlowska
47
60 kgHeeb
48
51 kgFernandes Silva
56
52 kgBrzeźna
67
56 kgHatteland Lima
98
65 kg
2
68 kgSoeder
3
52 kgDoppmann
5
55 kgRossner
11
64 kgMartisova
17
64 kgZabelinskaya
19
52 kgMarunde
23
58 kgBecker
25
64 kgBoyarskaya
34
67 kgMatusiak
36
58 kgByberg
42
56 kgPawlowska
47
60 kgHeeb
48
51 kgFernandes Silva
56
52 kgBrzeźna
67
56 kgHatteland Lima
98
65 kg
Weight (KG) →
Result →
68
51
2
98
# | Rider | Weight (KG) |
---|---|---|
2 | KUPFERNAGEL Hanka | 68 |
3 | SOEDER Christiane | 52 |
5 | DOPPMANN Priska | 55 |
11 | ROSSNER Petra | 64 |
17 | MARTISOVA Julia | 64 |
19 | ZABELINSKAYA Olga | 52 |
23 | MARUNDE Regina | 58 |
25 | BECKER Charlotte | 64 |
34 | BOYARSKAYA Natalia | 67 |
36 | MATUSIAK Bogumiła | 58 |
42 | BYBERG Lene | 56 |
47 | PAWLOWSKA Katarzyna | 60 |
48 | HEEB Barbara | 51 |
56 | FERNANDES SILVA Janildes | 52 |
67 | BRZEŹNA Paulina | 56 |
98 | HATTELAND LIMA Tone | 65 |