Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 4
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Fahlin
1
63 kgNovolodskaia
2
57 kgZabelinskaya
3
52 kgIndergand
4
65 kgVysotska
6
55 kgArzuffi
7
52 kgChristoforou
9
53 kgRitter
12
59 kgHannes
13
51 kgKasenova
14
52 kgJaskulska
16
52 kgShekel
18
58 kgMichiels
19
60 kgPliaskina
23
57 kgVandenbroucke
24
63 kgSaarelainen
26
58 kg
1
63 kgNovolodskaia
2
57 kgZabelinskaya
3
52 kgIndergand
4
65 kgVysotska
6
55 kgArzuffi
7
52 kgChristoforou
9
53 kgRitter
12
59 kgHannes
13
51 kgKasenova
14
52 kgJaskulska
16
52 kgShekel
18
58 kgMichiels
19
60 kgPliaskina
23
57 kgVandenbroucke
24
63 kgSaarelainen
26
58 kg
Weight (KG) →
Result →
65
51
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | FAHLIN Emilia | 63 |
2 | NOVOLODSKAIA Maria | 57 |
3 | ZABELINSKAYA Olga | 52 |
4 | INDERGAND Linda | 65 |
6 | VYSOTSKA Ievgeniia | 55 |
7 | ARZUFFI Alice Maria | 52 |
9 | CHRISTOFOROU Antri | 53 |
12 | RITTER Martina | 59 |
13 | HANNES Kaat | 51 |
14 | KASENOVA Karina | 52 |
16 | JASKULSKA Marta | 52 |
18 | SHEKEL Olga | 58 |
19 | MICHIELS Githa | 60 |
23 | PLIASKINA Anastasiia | 57 |
24 | VANDENBROUCKE Saartje | 63 |
26 | SAARELAINEN Sari | 58 |