Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 75
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Kröger
1
77 kgBastianelli
2
60 kgVan de Velde
4
58 kgGafinovitz
5
52 kgSolovey
8
56 kgGrossetête
12
60 kgTserakh
15
70 kgNilsson
17
58 kgPlichta
19
60 kgvan Houtum
20
55 kgMustonen
21
58 kgvan Neck
22
63 kgNovolodskaia
24
57 kgPenton
25
55 kgRitter
30
59 kgNeylan
40
52 kgDuyck
45
60 kgJounier
47
58 kgPintar
61
56 kg
1
77 kgBastianelli
2
60 kgVan de Velde
4
58 kgGafinovitz
5
52 kgSolovey
8
56 kgGrossetête
12
60 kgTserakh
15
70 kgNilsson
17
58 kgPlichta
19
60 kgvan Houtum
20
55 kgMustonen
21
58 kgvan Neck
22
63 kgNovolodskaia
24
57 kgPenton
25
55 kgRitter
30
59 kgNeylan
40
52 kgDuyck
45
60 kgJounier
47
58 kgPintar
61
56 kg
Weight (KG) →
Result →
77
52
1
61
# | Rider | Weight (KG) |
---|---|---|
1 | KRÖGER Mieke | 77 |
2 | BASTIANELLI Marta | 60 |
4 | VAN DE VELDE Julie | 58 |
5 | GAFINOVITZ Rotem | 52 |
8 | SOLOVEY Hanna | 56 |
12 | GROSSETÊTE Maëlle | 60 |
15 | TSERAKH Hanna | 70 |
17 | NILSSON Hanna | 58 |
19 | PLICHTA Anna | 60 |
20 | VAN HOUTUM Céline | 55 |
21 | MUSTONEN Sara | 58 |
22 | VAN NECK Melissa | 63 |
24 | NOVOLODSKAIA Maria | 57 |
25 | PENTON Sara | 55 |
30 | RITTER Martina | 59 |
40 | NEYLAN Rachel | 52 |
45 | DUYCK Ann-Sophie | 60 |
47 | JOUNIER Lucie | 58 |
61 | PINTAR Urška | 56 |