Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.2 * weight - 34
This means that on average for every extra kilogram weight a rider loses 1.2 positions in the result.
Rissveds
1
55 kgSkalniak-Sójka
2
54 kgSchweinberger
3
67 kgMichiels
8
60 kgVandenbulcke
16
60 kgPikulik
17
54 kgKarasiewicz
18
69 kgGhekiere
27
52 kgEklund
35
58 kgBravec
39
56 kgBrandt Heisel
41
52 kgAbaidullina
71
52 kgPisciali
79
63 kgLorenzen
88
71 kgvan Neck
92
63 kgGedraitytė
97
59 kg
1
55 kgSkalniak-Sójka
2
54 kgSchweinberger
3
67 kgMichiels
8
60 kgVandenbulcke
16
60 kgPikulik
17
54 kgKarasiewicz
18
69 kgGhekiere
27
52 kgEklund
35
58 kgBravec
39
56 kgBrandt Heisel
41
52 kgAbaidullina
71
52 kgPisciali
79
63 kgLorenzen
88
71 kgvan Neck
92
63 kgGedraitytė
97
59 kg
Weight (KG) →
Result →
71
52
1
97
# | Rider | Weight (KG) |
---|---|---|
1 | RISSVEDS Jenny | 55 |
2 | SKALNIAK-SÓJKA Agnieszka | 54 |
3 | SCHWEINBERGER Christina | 67 |
8 | MICHIELS Githa | 60 |
16 | VANDENBULCKE Jesse | 60 |
17 | PIKULIK Daria | 54 |
18 | KARASIEWICZ Karolina | 69 |
27 | GHEKIERE Justine | 52 |
35 | EKLUND Nathalie | 58 |
39 | BRAVEC Urška | 56 |
41 | BRANDT HEISEL Maja Winther | 52 |
71 | ABAIDULLINA Inna | 52 |
79 | PISCIALI Francesca | 63 |
88 | LORENZEN Christina Bragh | 71 |
92 | VAN NECK Melissa | 63 |
97 | GEDRAITYTĖ Akvilė | 59 |